Developing a Fibrosis Targeting and Tissue Reparative FiTTeR Therapy for the I...
Developing a Fibrosis Targeting and Tissue Reparative FiTTeR Therapy for the Infarcted Myocardium via an Injectable Functionalized Extracellular Matrix Hydrogel
As a Marie Skłodowska-Curie Fellow, I will develop, characterize, and determine the efficacy of a biomaterial platform to target pathologic fibrosis and promote tissue repair following myocardial infarction (MI). I have an ideal b...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MAT2012-38359-C03-01
MATERIALES QUE INDUCEN LA FIBRILOGENESIS DE LA FIBRONECTINA...
82K€
Cerrado
MAT2012-38359-C03-02
MATERIALES QUE INDUCEN LA FIBRILOGENESIS DE LA FIBRONECTINA...
41K€
Cerrado
MAT2012-38359-C03-03
MATERIALES QUE INDUCEN LA FIBRILOGENESIS DE LA FIBRONECTINA...
70K€
Cerrado
ENGAGE
ENGineering extracellular matrix based de novo proteins with...
175K€
Cerrado
MAT2015-69315-C3-2-R
REMODELACION POR MIOBLASTOS DE LA MATRIZ EXTRACELULAR EN LA...
61K€
Cerrado
FIS2017-85954-R
HIDROGELES MAGNETICOS SUPRAMOLECULARES PARA MEDICINA REGENER...
133K€
Cerrado
Información proyecto FiTTeR
Duración del proyecto: 29 meses
Fecha Inicio: 2017-03-03
Fecha Fin: 2019-08-20
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
As a Marie Skłodowska-Curie Fellow, I will develop, characterize, and determine the efficacy of a biomaterial platform to target pathologic fibrosis and promote tissue repair following myocardial infarction (MI). I have an ideal background and will perform well in this project based on my expertise in extracellular matrix (ECM) derived biomaterials, characterizing the immune response to biomaterials, and evaluating in vivo outcomes. The proposed system will consist of a protein fragment tethered to an injectable hydrogel. The hydrogel carrier will be composed of ECM, which has been shown to facilitate tissue repair processes by local modulation of immune cell phenotype . The cryptic protein fragment, recently isolated and recombinantly produced by the Stevens Group , has gained attention for its ability to regulate the onset of fibrosis by interfacing with cells to abrogate the release of matrix metalloproteinases (MMPs). No therapies currently exist to prevent or mitigate fibrosis. Developing a sophisticated delivery system for a cryptic protein fragment will enable the broad potential of targeting pathologic fibrosis to be realized. This system will be advantageous in simultaneously providing localized delivery, combined immunomodulatory and regulatory properties of the ECM and recombinant protein fragment, and sustained release of the protein fragment during degradation of the ECM hydrogel. The combination of my expertise (in ECM hydrogels, characterizing the host response to biomaterials, and translating technologies) and Prof Molly Stevens’s supervision and world-class interdisciplinary biomaterials-focused group, the 2014 Research Group of the Year (European Life Science Awards), at Imperial College London (ICL), together make this project ideally suited for success.