Determinants of mammalian transcription start site selection and core promoter u...
Determinants of mammalian transcription start site selection and core promoter usage
Understanding the mechanisms underlying the initiation and regulation of transcription remains one of the most fundamental questions in biology. Much of what we know about the transcription process was inferred from experiments on...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto DTSSCP
Líder del proyecto
KOBENHAVNS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
812K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Understanding the mechanisms underlying the initiation and regulation of transcription remains one of the most fundamental questions in biology. Much of what we know about the transcription process was inferred from experiments on a handful of genes. As these experiments are not realistically scalable, corresponding computational methods building on these findings have emerged; however, these are not accurate enough for annotation of genomes. The limitations reflect that we have no accurate universal model describing transcription initiation; to a large extent, our understanding is based on case stories. Recently, high-throughput methods have been developed to chart the TSS landscape with nucleotide resolution. Using these data, I have dissected promoters at nucleotide level and found patterns that explain the transcription initiation rate for individual nucleotides. The objective for this work is to extend this to the first universal model for how cells select core promoters and associated TSSs. This will have two counterparts: i)prediction of TSSs from DNA sequence given a region of accessible DNA, and ii)prediction of DNA accessibility based on DNA sequences and dynamic epigenetic factors. Such a model will be a corner stone of future experimental and computational transcriptome and gene regulation studies.