Innovating Works

MagGraphZyme

Financiado
Design of novel Magnetic Graphene Oxide Nanozyme platform for Theranostic applic...
MagGraphZyme aims at the development of a new hybrid multiplatform capable of triggering the intracellular production of reactive oxygen/nitrogen species (ROS/RNS) for inducing cell death in cancer cells. The proposed hybrid nanos... MagGraphZyme aims at the development of a new hybrid multiplatform capable of triggering the intracellular production of reactive oxygen/nitrogen species (ROS/RNS) for inducing cell death in cancer cells. The proposed hybrid nanosystem, based on the combination of magnetic nanoparticles (MNPs), nitrogen doped graphene oxide (N-GO) and a polymer (PLGA) shell, will improve ROS/RNS production due to the synergistic effects of all components regarding their catalytic activity as peroxidase-mimetic nanozymes. The control of this catalytic activity will be performed by heating the intracellular level via the activation of the constituent MNPs through a remotely applied magnetic field. Thus, a novel approach for intracellular ROS/RNS production and quantification will be implemented. Furthermore, with the aim of understanding the different cells’ pathways involved in the toxicity and the final death of the cells, these hybrid system will be evaluated to investigate pathway-specific ROS/RNS induction of apoptosis and ROS-response mechanisms. Thus, I will study signaling pathways which are known to be influenced by the production of these species. To this end, I propose detailed physical and chemical studies, down to the atomic level, of the MNPs@N-GO-PLGA systems for identifying the relationships between catalytic efficacy and active atomic sites within the structures. These works will be developed by a motivated researcher with a strong background in MNPs, who will enhance and diversify his skills in advanced microscopy techniques and will acquire competences in bio-medicine. This multidisciplinary and innovative proposal will strengthen the collaboration between the hosting institutions, will enable the European hosting institution to reinforce crucial competences in the understanding & production of multifunctional materials and will contribute to improving oncological applications, which is one of the most important scientific challenges with a high social impact. ver más
31/05/2026
261K€
Duración del proyecto: 45 meses Fecha Inicio: 2022-08-29
Fecha Fin: 2026-05-31

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2022-08-29
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 261K€
Líder del proyecto
UNIVERSIDAD DE ZARAGOZA. OFICINA DE TRANSFERE... No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico Pendiente de cálculo