Metal-Organic Frameworks (MOFs) – porous materials with almost unlimited chemical and structural diversity - have incited an interesting alternative to the drawbacks that nanotechnology is currently facing. The defect engineering...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CTQ2017-83486-P
REDES METAL-ORGANICAS DE INSPIRACION BIOLOGICA: COMPLEJIDAD...
64K€
Cerrado
DEFNET
DEFect NETwork materials science and engineering
4M€
Cerrado
PID2020-118564GA-I00
USO DE REDES METAL-ORGANICAS COMO RECUBRIMIENTO FUNCIONALES...
92K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Metal-Organic Frameworks (MOFs) – porous materials with almost unlimited chemical and structural diversity - have incited an interesting alternative to the drawbacks that nanotechnology is currently facing. The defect engineering of MOFs has been used as a tool to modify their porosity, chemical reactivity and electronic conductivity among other properties, but research is still limited in the vast majority towards Zr-MOFs. Notably, defect chemistry of Ti-MOFs remains unexplored despite that the pristine materials photoactivity, chemical and structural stability and Titanium being an abundant biocompatible metal.
This project, entitled `Defective Titanium Metal-Organic-Frameworks(DefTiMOFs)’ aims to develop novel high-throughput (HT)synthetic methodologies for the control of not only defect chemistry of Ti-MOFs,but also of their particle size and inner surface (porefunctionalisation) towards the controllable modification of their properties. HT synthesis will be convened with a set of novel characterisation techniques (mainly synchrotron-based) for atomic and molecular level of characterisation of defects, aiming to correlate synthetic conditions with defect formation (defect type, densityand spatial distribution within the framework)in order to provide thebase of knowledge to anticipate their properties based on the synthetic conditions. This will then allow for defect engineering of MOFs using a wide range of materials.
In view of the above and inspired by the high demand for clean and renewable energy sources including efficient and affordablewater delivery systems in places with limited access to drinkablewater, the DefTiMOFs project aims to correlate defect chemistry of Ti-MOFs with their performance towards environmentally friendly applications. This will lead to the ultimate design of materials with outstanding performance in heterogeneous catalysis, photocatalysis (hydrogen production) and water harvesting from air.