Electric Field Assisted Dynamic MOF alignment and Crystal Assembly
Despite the staggering number of reports on Metal-Organic Frameworks (MOFs), we are still greatly limited in our ability to manipulate colloidal MOF particles and control MOF orientation. Reliable control of MOF crystal orientatio...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
DEFNET
DEFect NETwork materials science and engineering
4M€
Cerrado
FJC2021-048154-I
Synthesis, characterization and assembly of electroactive MO...
65K€
Cerrado
CTQ2017-87201-P
MOFS Y MATERIALES MOLECULARES MULTIFUNCIONALES: DISEÑO, SINT...
149K€
Cerrado
CTQ2017-83486-P
REDES METAL-ORGANICAS DE INSPIRACION BIOLOGICA: COMPLEJIDAD...
64K€
Cerrado
DefTiMOFs
Defective Titanium Metal Organic Frameworks
161K€
Cerrado
PID2020-118564GA-I00
USO DE REDES METAL-ORGANICAS COMO RECUBRIMIENTO FUNCIONALES...
92K€
Cerrado
Información proyecto DYNAMOF
Duración del proyecto: 68 meses
Fecha Inicio: 2021-01-20
Fecha Fin: 2026-09-30
Líder del proyecto
UNIVERSITAT WIEN
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Despite the staggering number of reports on Metal-Organic Frameworks (MOFs), we are still greatly limited in our ability to manipulate colloidal MOF particles and control MOF orientation. Reliable control of MOF crystal orientation is extremely important as the properties and functionality of most MOFs are highly dependent upon crystallographic direction due to lattice anisotropy. However, the effective exploitation of such functionality remains frustratingly out of reach.
Based on the novel concept of exploiting MOF anisotropic ion mobility and polarizability, DYNAMOF aims to establish a flexible toolbox of methods for both dynamic and static control over the orientation, alignment and deposition of MOF crystals, which can be integrated into other processing techniques, thus paving the way for major advancements in the performance of MOF materials, composites and devices.
The mechanisms of E-field alignment of MOF particles as well as colloidal interactions governing MOF plastic or liquid crystal assembly, non-classical crystal growth and oriented film formation will be studied to develop a comprehensive and revolutionary platform for orientational control of free-standing and supported MOF crystals. As a proof-of-concept, the implications of MOF alignment on the proton conduction of MOF composites will be tested to pave the way towards next-generation MOF proton exchange membranes.
This ambitious project, which straddles the disciplines of materials science, chemistry and physics, is expected to break new ground by removing a key barrier in our ability to manipulate MOF particles. The wider goal of DYNAMOF is to establish the principles and working methods for colloidal manipulation across a wide materials spectrum, by using MOFs as a versatile platform for expanding our understanding of colloidal materials. Given the ubiquity and importance of colloids in materials science and daily life, the success of DYNAMOF will therefore have far reaching impact.