Innovating Works

DLT

Financiado
Deep Learning Theory Geometric Analysis of Capacity Optimization and Generali...
Deep Learning Theory Geometric Analysis of Capacity Optimization and Generalization for Improving Learning in Deep Neural Networks Deep Learning is one of the most vibrant areas of contemporary machine learning and one of the most promising approaches to Artificial Intelligence. Deep Learning drives the latest systems for image, text, and audio processing, as... Deep Learning is one of the most vibrant areas of contemporary machine learning and one of the most promising approaches to Artificial Intelligence. Deep Learning drives the latest systems for image, text, and audio processing, as well as an increasing number of new technologies. The goal of this project is to advance on key open problems in Deep Learning, specifically regarding the capacity, optimization, and regularization of these algorithms. The idea is to consolidate a theoretical basis that allows us to pin down the inner workings of the present success of Deep Learning and make it more widely applicable, in particular in situations with limited data and challenging problems in reinforcement learning. The approach is based on the geometry of neural networks and exploits innovative mathematics, drawing on information geometry and algebraic statistics. This is a quite timely and unique proposal which holds promise to vastly streamline the progress of Deep Learning into new frontiers. ver más
31/12/2023
MPG
2M€
Duración del proyecto: 68 meses Fecha Inicio: 2018-04-26
Fecha Fin: 2023-12-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2023-12-31
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2017-STG: ERC Starting Grant
Cerrada hace 8 años
Presupuesto El presupuesto total del proyecto asciende a 2M€
Líder del proyecto
MAXPLANCKGESELLSCHAFT ZUR FORDERUNG DER WISSE... No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5