Deep Learning the Dark Universe with Gravitational Waves
Gravitational wave astronomy has opened an extraordinary new window to test the theory of gravity in the genuinely strong, highly dynamical and relativistic regime. The LIGO-Virgo Collaboration has now detected over 50 mergers of...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2019-106416GB-I00
EXPLOTACION DEL POTENCIAL CIENTIFICO DE LOS DETECTORES DE ON...
218K€
Cerrado
AWE
Accurate Waveforms for Extreme Intermediate mass ratio inspi...
263K€
Cerrado
BlackHoleMaps
Mapping gravitational waves from collisions of black holes
2M€
Cerrado
PGC2018-101119-B-I00
RETOS ANALITICOS Y NUMERICOS EN LA FISICA DE LAS ONDAS GRAVI...
9K€
Cerrado
GWtheory
Gravitational Wave Theory: Feynman Toolbox for Einstein Grav...
215K€
Cerrado
PID2021-125485NB-C21
ASTROFISICA RELATIVISTA COMPUTACIONAL Y ANALISIS DE DATOS EN...
207K€
Cerrado
Información proyecto Deledda
Duración del proyecto: 51 meses
Fecha Inicio: 2022-05-18
Fecha Fin: 2026-08-31
Líder del proyecto
UNIVERSITA DI PISA
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
265K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Gravitational wave astronomy has opened an extraordinary new window to test the theory of gravity in the genuinely strong, highly dynamical and relativistic regime. The LIGO-Virgo Collaboration has now detected over 50 mergers of compact binary systems and this number will considerably increase in the coming years. There are currently two main issues related to the possibility of testing gravity with gravitational wave observations: the weakness of parametric tests of General Relativity to go beyond null tests and the very long inference time required by standard samplers which can take up to months. Specific waveform models and new techniques to speed up statistical inference are therefore crucial to maximise the scientific return of already available and upcoming data. In this project, we will construct an analytical model of the gravitational waves emitted during the late inspiral and merger of compact objects in theories of gravity that are cosmologically motivated, namely that have a chance to explain Dark Energy. We will then leverage deep learning techniques to promptly produce the posterior for the corresponding parameters given the detector data. To this aim, we will build up on two codes developed by one of the supervisors - ROMAN and PERCIVAL - which pioneered the use of machine learning in gravitational wave science. We will then apply this new pipeline to the real LIGO-Virgo data and perform Bayesian inference of Dark Energy parameters. All together this project will provide a new and complete framework to test the dark Universe with gravitational wave observations, exploiting state-of-the-art deep learning techniques.