Decoding epistatic genome/RNome interactions in eukaryotic fitness gain using Le...
Decoding epistatic genome/RNome interactions in eukaryotic fitness gain using Leishmania parasites as a unique model system
Darwinian evolution plays a central yet poorly understood role in human disease. Iterations between genetic mutation and environmental selection drive cancer development, microbial infection and therapeutic failure, thus increasin...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
Macro-EpiK
The macroevolutionary impact of epigenetics and lateral gene...
1M€
Cerrado
ADAPT_EVOL
The molecular process and functional consequences of adaptat...
100K€
Cerrado
BFU2015-68351-P
LOS DETERMINANTES MOLECULARES Y LAS CONSECUENCIAS EVOLUTIVAS...
166K€
Cerrado
Multicellularity
The genetic basis of the convergent evolution of fungal mult...
1M€
Cerrado
BFU2012-38236
HACIA UNA VISION COMPLETA DE LA ADAPTACION EN GENOMAS COMPLE...
304K€
Cerrado
FUNGI-PATHnCode
The genomic basis of emerging fungal pathogenicity
230K€
Cerrado
Información proyecto DECOLeishRN
Duración del proyecto: 71 meses
Fecha Inicio: 2023-05-01
Fecha Fin: 2029-04-30
Líder del proyecto
INSTITUT PASTEUR
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
9M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Darwinian evolution plays a central yet poorly understood role in human disease. Iterations between genetic mutation and environmental selection drive cancer development, microbial infection and therapeutic failure, thus increasing human mortality. The molecular mechanisms that harness the deleterious effects of genome instability to generate beneficial phenotypes in these pathogenic systems are unknown. Here we investigate this important unsolved question in the protozoan parasite Leishmania that causes devastating human infections. In the absence of transcriptional regulation, these early-branching eukaryotes exploit genome instability to regulate expression by gene dosage. Leishmania thus represents an ideal system to investigate how genome instability drives fitness gain in fast evolving, eukaryotic cells, such as observed during cancer development. Synergizing our expertise in genomics, evolution, systems and RNA biology, we have recently made several breakthrough discoveries that link parasite fitness gain to epistatic interactions between co-amplifying genes of small, non-coding RNAs, which program epitranscriptomic and translational regulation. We hypothesize that these genome/RNome interactions generate the phenotypic landscape underlying Leishmania fitness gain. Our proposal investigates this ground-breaking concept through two Specific Aims that (i) combine experimental parasite differentiation and evolution in vitro and in vivo to reveal molecular mechanisms underlying Leishmania predictive adaptation and fitness gain, and (ii) investigate how RNA modification and non-coding RNAs contribute to adaptation by regulating mRNA stability and translational control. Our findings will be highly relevant to other fast growing, eukaryotic systems that rely on genome instability, such as cancer or fungal pathogens.