Deciphering RNAi machineries required for miRNAs Cell to Cell Transfer in Mammal...
Deciphering RNAi machineries required for miRNAs Cell to Cell Transfer in Mammals
Small RNAs are key post-transcriptional regulators of eukaryotic gene expression. Among the most fascinating aspects of small RNAs is their ability to cross cell boundaries owing to their non-cell-autonomy. Recently, the host labo...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
ASTRiR
Argonaute associated factors required for translational repr...
178K€
Cerrado
SRNAS
Small non coding RNAs in cell function and disease
1M€
Cerrado
MIREG
Regulation of viral miRNAs processing
45K€
Cerrado
MeViSP
Genetic biochemical and cell biological mechanisms of virus...
185K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Small RNAs are key post-transcriptional regulators of eukaryotic gene expression. Among the most fascinating aspects of small RNAs is their ability to cross cell boundaries owing to their non-cell-autonomy. Recently, the host laboratory demonstrated that 21-24bp siRNAs could act as mobile silencing signals in Arabidopsis. Interestingly, in C. Elegans, systemic silencing requires SID1, a transmembrane channel through which endogenous double-stranded RNA may be communicated to adjacent cells. Functional SID1 homologues and miRNAs found in secreted exosomes in mammals suggest that systemic RNA silencing might also operate in these organisms, raising the question of how this process might be regulated? Tight regulation is indeed anticipated given the exquisite expression patterns and developmental roles of many mammalian miRNAs. A first possibility for regulated miRNA movement entails that it might mostly occur between compatible emitting and receiving cells. This might be achieved via qualitatively differences in miRNAs effector complexes, localization or shear availability of silencing transporter systems. A second, non-mutually exclusive possibility is that release of miRNA through membranes might be polarized. The identification, in the host laboratory, of a requirement for multi-vesicular bodies for the assembly of miRNA effector complexes supports this idea. In fact, we propose that both mechanisms could be at work in specialized cells, such as secreting epithelia, to direct the selective release of miRNAs either along the epithelial cell layer or in body fluids. Using the mammary gland as a model system we will (i) decipher the molecular requirements for cell to emit or receive systemic miRNAs (ii) study how cell-polarization might affect miRNA cell-to-cell transfer (iii) investigate the in vivo relevance of our findings by characterizing miRNAs contained in milk, and by studying potential effects of systemic miRNA arising from grafted tumors in mice.