Innovating Works

DEFORM

Financiado
Dead or Alive Finding the Origin of Caldera Unrest using Magma Reservoir Models
Caldera-forming volcanic eruptions can have severe impacts from the local to global scale. As vast quantities of magma are ejected during the eruption, they can trigger deadly pyroclastic density currents and lahars, release noxio... Caldera-forming volcanic eruptions can have severe impacts from the local to global scale. As vast quantities of magma are ejected during the eruption, they can trigger deadly pyroclastic density currents and lahars, release noxious gases and even alter global climate. At many calderas, episodic unrest in the form of pronounced uplift, increased seismicity and elevated gas emissions raise concern over the potential for such destructive eruptions. However, it remains difficult to ascertain whether the unrest observations indicate (1) an injection of new magma into the crustal reservoir, which could increase its potential for explosive eruptions, or (2) a sudden release of magmatic volatiles from a cooling and crystallizing reservoir, which would remain unlikely to erupt explosively. In this proposed project, I will develop a physics-based model of a magma reservoir to determine the processes involved in magma injection and evolution that may lead to episodic unrest. Of particular interest is how gases migrate through the system and alter reservoir volume. The model will simulate the thermo-mechanical evolution of a two-dimensional, three-phase (solids, liquids, gas) magma reservoir. By leveraging emerging continuum frameworks for reactive transport modelling, this work will expand existing two-dimensional models to simulate three phases in varying proportions in a computationally efficient approach. The reservoir model will be coupled to ductile-to-brittle crustal deformation to understand the conditions that lead to episodic unrest. I will compare simulation results with time series observations of ground deformation and gas emissions from Laguna del Maule in Chile, thought to be undergoing magma injection, and Long Valley in the US, thought to have experienced punctuated gas release. Results will bridge the gap among current models of three-phase magma dynamics and will improve understanding of the eruption hazard implied by caldera unrest. ver más
31/10/2022
201K€
Duración del proyecto: 31 meses Fecha Inicio: 2020-03-17
Fecha Fin: 2022-10-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2022-10-31
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 201K€
Líder del proyecto
EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH No se ha especificado una descripción o un objeto social para esta compañía.