Organismal development requires proper timing of events such as cell fate choices, but the mechanisms that control temporal patterning remain poorly understood. In particular, we know little of the cyclical timers, or ‘clocks’, th...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
DevCycle
Timing cell cycles in multicellular development
2M€
Cerrado
BFU2017-86244-P
ESTUDIO DE MECANISMOS DE ORGANOGENESIS CONTROLADOS POR GENES...
183K€
Cerrado
RYC-2014-15551
Control of biological timing in C. elegans
309K€
Cerrado
BFU2016-77587-P
CONTROL DEL CRECIMIENTO Y SEÑALIZACION CELULAR
424K€
Cerrado
BES-2016-079161
DE LOS GENES A LAS CELULAS Y DE LAS CELULAS A LOS ORGANOS EN...
Cerrado
miRhythm
Understanding mechanisms and functions of miRNA oscillations...
203K€
Cerrado
Información proyecto CYCLODE
Duración del proyecto: 75 meses
Fecha Inicio: 2017-06-28
Fecha Fin: 2023-09-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Organismal development requires proper timing of events such as cell fate choices, but the mechanisms that control temporal patterning remain poorly understood. In particular, we know little of the cyclical timers, or ‘clocks’, that control recurring events such as vertebrate segmentation or nematode molting. Furthermore, it is unknown how cyclical timers are coordinated with the global, or linear, timing of development, e.g. to ensure an appropriate number of cyclical repeats. We propose to elucidate the components, wiring, and properties of a prototypic developmental clock by studying developmental timing in the roundworm C. elegans. We build on our recent discovery that nearly 20% of the worm’s transcriptome oscillates during larval development – an apparent manifestation of a clock that times the various recurring events that encompass each larval stage. Our aims are i) to identify components of this clock using genetic screens, ii) to gain insight into the system’s architecture and properties by employing specific perturbations such as food deprivation, and iii) to understand the coupling of this cyclic clock to the linear heterochronic timer through genetic manipulations. To achieve our ambitious goals, we will develop tools for mRNA sequencing of individual worms and and for their developmental tracking and microchamber-based imaging. These important advances will increase temporal resolution, enhance signal-to-noise ratio, and achieve live tracking of oscillations in vivo. Our combination of genetic, genomic, imaging, and computational approaches will provide a detailed understanding of this clock, and biological timing mechanisms in general. As heterochronic genes and rhythmic gene expression are also important for controlling stem cell fates, we foresee that the results gained will additionally reveal regulatory mechanisms of stem cells, thus advancing our fundamental understanding of animal development and future applications in regenerative medicine.