Cost-effectiVe materIals for susTainAble eLectrolyzers
Electrolysis technologies are pivotal in accelerating the transition from fossil fuels to renewable energy. Among them, proton exchange membrane (PEM) electrolyzers, currently stand at an installed capacity of 0.92 GW and continue...
Electrolysis technologies are pivotal in accelerating the transition from fossil fuels to renewable energy. Among them, proton exchange membrane (PEM) electrolyzers, currently stand at an installed capacity of 0.92 GW and continue to grow, in view of their desirable performance traits such as high operating currents and fast response.
However, their reliance on perfluorinated materials such as Poly(Trifluoroethenesulfonyl Fluoride) (C2F4O2S)n for core parts (membrane and catalyst binder), and critical raw materials (iridium and platinum for catalysts), raises environmental concerns due to the recycling challenges of forever chemicals –the EU weighs a complete ban for forever chemicals such as Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS), and cost. The reliance on noble metal catalysts, especially iridium, does not contribute to high capital costs, but poses scalability concerns due to the extremely limited availability of iridium. Overall, these hinder the sustainability prospects of PEM technologies at scale, and their widespread commercialization. These underscore the pressing need for innovative strategies to realize sustainable and efficient electrolyzers.
VITAL (Cost-effectiVe materIals for susTainAble eLectrolyzers) addresses these challenges through the development of novel, fluorine-free membranes, integrated with cost-effective, non-critical raw materials. VITAL aims to demonstrate electrolyzer systems for H2 generation which combine sustainable scalability and performance. VITAL innovation relies on the development of fluorine-free membrane electrode assemblies, implemented through a recyclable olefin polymer membrane paired with in situ grown catalysts; free of platinum group metals (PGMs), and designed to achieve competitive performance for H2 electrosynthesis. This project addresses the need for scalable and sustainable electrolysis, vital in the shift towards renewable energy sources, and reducing fossil fuel dependency.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.