Atomically dispersed iridium catalysts for efficient and durable proton exchange...
Atomically dispersed iridium catalysts for efficient and durable proton exchange membrane water electrolysis
The green hydrogen produced by water electrolysis using renewable energy as power input will play a vital role in the decarbonization of various sectors, particularly the heavy industry and freight road transport where electrifica...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The green hydrogen produced by water electrolysis using renewable energy as power input will play a vital role in the decarbonization of various sectors, particularly the heavy industry and freight road transport where electrification is impossible or too costly. Proton exchange membrane water electrolysis (PEMWE) is a very promising low-temperature technology, and has a number of advantages over the conventional alkaline water electrolysis. However, the usage of precious and scarce noble metal iridium (Ir) to catalyze the thermodynamically and kinetically demanding oxygen evolution reaction (OER) is indispensable to achieve decent electrolysis performance. To enable widespread deployment of PEM electrolyzers and make electrolyzed hydrogen fuel economically competitive, the utilization of Ir in electrolyzers must be reduced without comprising the catalytic performance for the OER. The AdIrCAT project aims at developing the emerging atomically dispersed Ir catalysts, which will maximize the utilization of Ir and meanwhile improve the mass activity of Ir catalysts by a factor of at least 5. Moreover, a method will be developed that potentially allows for upscale production of atomically dispersed Ir catalysts. The catalysts will be accessed not only in the half-cell configuration but also in membrane electrode assemblies under industry-relevant conditions in collaboration with a company where the applicant will have her secondment. The applicant and host group have complementary expertise that can be transferred to each other. The host institution will offer the applicant a range of training to enhance her competences and skills in terms of proposal preparation, project management, leadership, and science communications. Successful implementation of this project will help the applicant reach her professional maturity and remarkably enhance her future career prospects as a female scientist, leading her to find a tenure-track position after the Fellowship.