Stress leads to enhanced food intake and a shift in dietary choices towards more high-caloric and unhealthy food. While this serves an adaptive purpose to replenish energy stores after a physical challenge, in modern society where...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
ReCoDE
Reshaping cortical circuits to decrease binge eating
1M€
Cerrado
BES-2015-073835
MECANISMOS NEUROBIOLOGICOS IMPLICADOS EN LA PERDIDA DE CONTR...
93K€
Cerrado
FoodConnect
Modulating feeding behavior in obesity: from brain lesions t...
150K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Stress leads to enhanced food intake and a shift in dietary choices towards more high-caloric and unhealthy food. While this serves an adaptive purpose to replenish energy stores after a physical challenge, in modern society where continuous psychological stressors are present and cheap unhealthy food easily accessible, this leads to an alarming situation where many people overeat. As a consequence, obesity levels are rising with severe consequences for our health. Especially people with an eating disorder, like binge-eating disorder, are vulnerable to this situation. Human and animal studies both point to a critical role of the prefrontal cortex (PFC) in coordinating stress-induced food intake. The prefrontal cortex is a highly heterogenous structure sending coordinated neuronal output to many brain regions with opposing roles in food regulation. This indicates that these circuits are under tight regulation of local interneurons. However how interneurons coordinate circuits for stress-induced feeding behavior is not known. In this project I aim to understand how Inhibitory interneurons shape output patterns of prefrontal cortical pyramidal neurons in a projection-specific manner to drive stress-induced food intake. To this aim I will use a combination of viral tracing techniques and in vivo electrophysiological recordings of identified PFC interneurons and pyramidal neurons in mice. Moreover I will use chemogenetic approaches to manipulate specific PFC pyramidal neural circuits to understand their role in stress eating responses. This will yield important insight into the circuit mechanisms underlying this maladaptive behavior. Studying how this phenomenon arises at the level of neuronal circuits will provide evidence-based targets for prevention strategies.