Controlling evolutionary dynamics of networked autonomous agents
Large-scale technological, biological, economic, and social complex systems act as complex networks of interacting autonomous agents. Large numbers of interacting agents making self-interested decisions can result in highly comple...
Large-scale technological, biological, economic, and social complex systems act as complex networks of interacting autonomous agents. Large numbers of interacting agents making self-interested decisions can result in highly complex, sometimes surprising, and often suboptimal, collective behaviors. Empowered by recent breakthroughs in data-driven cognitive learning technologies, networked agents collectively give rise to evolutionary dynamics that cannot be easily modeled, analysed and/or controlled using current systems and control theory. Consequently, there is an urgent need to develop new theoretical foundations to tackle the emerging challenging control problems associated with evolutionary dynamics for networked autonomous agents.
The aim of this project is to develop a rigorous theory for the control of evolutionary dynamics so that interacting autonomous agents can be guided to solve group tasks through the pursuit of individual goals in an evolutionary dynamical process. The theory will then be tested, validated and improved against experimental results using robotic fish.
To achieve the aim, I will: (1) develop a general formulation for stochastic evolutionary dynamics with control inputs, enabling the study on controllability and stabilizability for evolutionary processes; (2) introduce stochastic control Lyapunov functions to design control laws; (3) construct new classes of conditional strategies that may propagate controlled actions effectively from focal agents in multiple time scales; and (4) validate experimentally on tasks with unknown difficulties that require a group of robotic fish to evolve and adapt.
The project will result in a major advance from the conventional usage of evolutionary game theory with the systematic design to actively control evolutionary outcomes. The combination of theory with experimentation and the multi-disciplinary nature of the approach will lead to new applications of autonomous robotic systems.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.