Constructing chiral molecules merging ELECTRochemistry and ORGANOcatalysis
Drug discovery must identify successful lead candidates. As such, the development of new catalytic methods for the production of chiral molecules is extremely valuable. ELECTRORGANO seeks to synergistically combine two powerful mo...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto ELECTRORGANO
Duración del proyecto: 25 meses
Fecha Inicio: 2021-07-13
Fecha Fin: 2023-08-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Drug discovery must identify successful lead candidates. As such, the development of new catalytic methods for the production of chiral molecules is extremely valuable. ELECTRORGANO seeks to synergistically combine two powerful modes of molecule activation, namely asymmetric organocatalysis and microfluidic electrochemistry, to provide an attractive new pathway for the formation of demanded chiral molecules. Both organocatalysis and electrochemistry possess extraordinary potential for the sustainable preparation of novel organic molecules, which are required to drive innovation within the pharmaceutical industry. However, the implementation of electrochemical methods for the design of stereoselective processes is still falling short, mostly due to the fleetingness of the radical ions intermediates generated on the electrode surface. ELECTRORGANO asks whether the use of an electrochemical microfluidic setup, coupled with asymmetric organocatalysis, can overcome these intrinsic limitations, rapidly providing chiral building blocks with high stereocontrol. Finally, mechanistic studies, aided by the use of in-line instruments, will provide fundamental understanding in the origin of the enantioselective induction, setting the stage for future breakthroughs in enantioselective electrochemistry.
This project is highly interdisciplinary, involving different research areas such as asymmetric organocatalysis, electrochemistry, and microfluidics. As such, it is envisioned that the development of this new platform can generate breakthrough scientific papers, valuable discoveries and/or potential patents. This fellowship brings a two-fold transfer of knowledge: advanced techniques in asymmetric catalysis to the host institution and electrochemical methods and microfluidic flow chemistry to the fellow. Overall, the project’s multidisciplinarity and intersectoral nature will broaden the fellow’s competencies and will place him in a competitive position for his next career move.