Computational eco toxicity assessment of pharmaceutical and cosmetics material...
Computational eco toxicity assessment of pharmaceutical and cosmetics materials an approach towards a green and sustainable environment
The main goal of the proposed research project is the computational evaluation of eco-toxicity (diverse endpoints) of various chemicals that are vastly utilized and produced by the pharmaceutical and cosmetic industries, such as...
The main goal of the proposed research project is the computational evaluation of eco-toxicity (diverse endpoints) of various chemicals that are vastly utilized and produced by the pharmaceutical and cosmetic industries, such as green solvents (including future ones, i.e., ionic liquids and deep eutectic solvents) and active pharmaceutical ingredients (API).
We will be majorly focusing on toxicity in aquatic environment, where the toxicity data will cover four trophic levels of aquatic organisms, i.e., fish (vertebrates), invertebrates such as daphnids, algae (aquatic plants), and microorganisms. The toxicity related properties that will be studied include acute and chronic toxicity, biodegradation and bioaccumulation.
The research methodology to perform toxicity assessment and for understanding the structural features responsible for the eco-toxicity, will involve diverse Artificial Intelligence (AI) and chemoinformatics techniques like Quantitative Structure-Activity Relationship (QSAR), interspecies QSAR (QAAR), toxicophore mapping, virtual screening, similarity search, clustering techniques, multimedia mass-balance (MM) modeling (to understand the distribution profile of chemicals in different environmental compartments), matched molecular pair (MMPs) analysis etc.
The knowledge gained from the study will help in classifying existing chemicals into toxic and non-toxic groups and will also help in designing novel analogues of selected chemical that will show better desirable physicochemical properties with less or no eco-toxicity. This project will also include development of AI software tools and scheming KNIME workflows for various computational tasks.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.