Plants do not harvest the whole solar spectrum equally at the different wavelengths. They indeed reflect green, absorbs red and blue, so that we see them green. The consequence of that is that the solar spectrum is actually not op...
ver más
30/09/2023
UNIVERSITE DE POIT...
197K€
Presupuesto del proyecto: 197K€
Líder del proyecto
UNIVERSITE DE POITIERS
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Fecha límite participación
Sin fecha límite de participación.
Financiación
concedida
El organismo H2020 notifico la concesión del proyecto
el día 2023-09-30
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto COSMAGREEN
Duración del proyecto: 42 meses
Fecha Inicio: 2020-03-11
Fecha Fin: 2023-09-30
Líder del proyecto
UNIVERSITE DE POITIERS
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
197K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Plants do not harvest the whole solar spectrum equally at the different wavelengths. They indeed reflect green, absorbs red and blue, so that we see them green. The consequence of that is that the solar spectrum is actually not optimised for energy conversion. However, incoming solar spectrum can be modified in order to shift less efficient wavelengths to more efficient one (like green to red) using fluorescent pigments or phosphors. In this way, photosynthesis efficiency can be increased. Meanwhile, when one uses standard fluorescent pigments implemented in a coating at the top of a greenhouse, half of the converted sunlight is emitted back to space due to their isotropic emission, thus lowering the conversion efficiency. To overcome this limit, we propose to use the properties of nano antennas for which it has been shown that they can change the emitting direction of pigments when they are placed in their vicinity. We will design a greenhouse coating that enhance photosynthesis by increasing the effective light inside greenhouses using coatings having nano-antenna phosphor pairs. Firstly, we will perform numerical calculations considering near field radiation and fluorescence, in order to find an optimum design in terms of antenna and phosphor size. Then, the coating will be produced in collaboration with a deposition facility using corresponding parameters from the numerical study. Finally, the actual design will be characterised using spectroscopy to determine the discrepancy between numerical and experimental study. Further actions like changing numerical solver and/or fabrication methods will be considered after a feedback from the two studies.