Closed-Loop and multisEnsing delIvery tool for controlled Laser Ablation of tumo...
Closed-Loop and multisEnsing delIvery tool for controlled Laser Ablation of tumors
The need of a minimally invasive alternative to traditional cancer surgery is pushing the global market of thermal ablation devices, mainly for treating delicate organs (brain, prostate, breast, pancreas, lung) in inoperable patie...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto LEILA
Duración del proyecto: 23 meses
Fecha Inicio: 2022-11-01
Fecha Fin: 2024-10-31
Líder del proyecto
POLITECNICO DI MILANO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The need of a minimally invasive alternative to traditional cancer surgery is pushing the global market of thermal ablation devices, mainly for treating delicate organs (brain, prostate, breast, pancreas, lung) in inoperable patients. With its fine and flexible applicator, laser ablation (LA) was successfully used in lesions difficult to access with conventional surgery, and its market is expected to show the highest growth rates in the next 5 years. However, crucial aspects and clinical needs are still unsolved for LA: the poor reproducibility of the procedure outcome and the lack of mini-invasive and accurate intraprocedural control make LA strongly relying on the doctor experience. The lack of control causes subtotal tumor coverage, thus bringing cancer progression and recurrence. To solve this issue, in the ERC LASER OPTIMAL project that I lead, it was developed the first platform which integrates a closed-loop control strategy of LA with multiplexed fiber optic sensors (FOSs) at the millimetric-scale, and modulates the laser power based on the measured tissue temperature. LEILA is the integration of this control platform with a novel smart applicator embedding the laser delivery and the temperature monitoring with FOSs. In this PoC proposal, the technical-commercial feasibility study will be performed to move the LEILA system to the market. The PoC will allow prototyping the system, establishing contact with stakeholders for testing and integration of LEILA in existing medical systems, and preparing a ready-to-use tool. The PoC will also set the market and health technology assessment, the business model, and the IP protection strategy with identification of the best exploitation strategy for valorising the know-how.