Close encounters in the phycosphere Microscale syntrophic interactions between...
Close encounters in the phycosphere Microscale syntrophic interactions between diatom and diazotroph populations
Bacterial interactions with eukaryotic phytoplankton are ubiquitous in marine ecosystems. The basis of many of these interactions is a reciprocal exchange of metabolites that mutually benefits the organisms involved. Under diffusi...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
BIOMES
Biogeochemical Impacts Of Mixotrophy and Ecological Stoichio...
194K€
Cerrado
VIBES
The impact of the viral shunt and its metabolic landscape on...
3M€
Cerrado
CTM2016-80095-C2-1-R
NUEVAS APROXIMACIONES PARA LA EXPLORACION DE LAS INTERACCION...
225K€
Cerrado
SYNERGY
Do Synechococcus regulatory networks underpin marine ecologi...
210K€
Cerrado
CTM2015-69936-P
DESVELANDO INTERACCIONES ECOLOGICAS ESENCIALES EN COMUNIDADE...
164K€
Cerrado
CTM2017-83362-R
PAPEL DE LAS INTERACCIONES FITOPLANCTON-BACTERIAS EN LA RESP...
117K€
Cerrado
Información proyecto Microsyndia
Duración del proyecto: 24 meses
Fecha Inicio: 2020-07-17
Fecha Fin: 2022-07-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Bacterial interactions with eukaryotic phytoplankton are ubiquitous in marine ecosystems. The basis of many of these interactions is a reciprocal exchange of metabolites that mutually benefits the organisms involved. Under diffusion limitation, such relationships typically require close spatial coupling between the two partners. How long these intimate interactions must endure for a sustained exchange to occur is unclear and challenges our judgement of what truly constitutes a symbiosis.
Understanding the dynamics of syntrophic interactions is essential to understand the impact of bacterial communities in marine biogeochemical cycles. With this proposal, I intend to evaluate the potential role of diazotrophic bacteria in alleviating the nutrient demands of algae in nitrogen-limited environments.
To achieve this, I plan to establish a model microbial system with a marine heterotrophic diazotroph, which has an obligate dependency on photosynthetically fixed carbon, and a diatom, which relies on nitrogen fixed by the diazotroph. I will construct a microfluidic bioreactor to enable detailed monitoring of the spatiotemporal distribution of bacteria and diatom cells during long-term culturing. Integrating this microenvironment with stable-isotope probing and Raman microscopy will allow me to quantify carbon and nitrogen uptake and transfer rates between partners. By relating microbial behaviour to single-cell activity rates, this project will offer invaluable information connecting the structure, dynamics and function of microbial consortia, and thereby provide robust insights into the basal ecological functioning that supports aquatic ecosystems.