Chip Scale Electrically Powered Optical Frequency Combs
In ELECTRIC, I will integrate electrically powered optical frequency combs on mass manufacturable silicon chips. This will allow for making use of all the advantageous properties of these light sources in real-life situations.
Opt...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
IRcomb
Monolithic Frequency Comb Generators In the Mid Infrared
181K€
Cerrado
CHRONOS
Route to On Chip Resonating Optical Clocks via Nonlinear Opt...
187K€
Cerrado
µCOMB
Microresonator based Frequency Comb Generators
2M€
Cerrado
TEC2015-65212-C3-1-P
PEINES DE FRECUENCIA GENERADOS POR LASERES DE SEMICONDUCTOR
66K€
Cerrado
TEC2015-65212-C3-3-P
PEINES DE FRECUENCIA GENERADOS POR LASERES DE SEMICONDUCTOR
78K€
Cerrado
STAND
Standalone soliton microcomb system
100K€
Cerrado
Información proyecto ELECTRIC
Duración del proyecto: 70 meses
Fecha Inicio: 2017-09-08
Fecha Fin: 2023-07-31
Líder del proyecto
UNIVERSITEIT GENT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
In ELECTRIC, I will integrate electrically powered optical frequency combs on mass manufacturable silicon chips. This will allow for making use of all the advantageous properties of these light sources in real-life situations.
Optical frequency combs are light sources with a spectrum consisting of millions of laser lines, equally spaced in frequency. This equifrequency spacing provides a link between the radio frequency band and the optical frequency band of the electromagnetic spectrum. This property has literally revolutionized the field of frequency metrology and precision laser spectroscopy. Recently, their application field has been extended. Amongst others, their unique properties have been exploited in precision distant measurement experiments as well as optical waveform and microwave synthesis demonstrators. Moreover, so called dual-comb spectroscopy experiments have demonstrated broadband Fourier Transform Infrared spectroscopy with ultra-high resolution and record acquisition speeds. However, most of these demonstrations required large bulky experimental setups which hampers wide deployment.
I will build frequency combs on optical chips that can be mass-manufactured. Unlike the current chip scale Kerr comb based solutions they do not need to be optically pumped with a powerful continuous wave laser and can have a narrower comb spacing. The challenge here is two-fold. First, we need to make electrically powered integrated low noise oscillators. Second, we need to lower the threshold of current on-chip nonlinear optical interactions by an order of magnitude to use them in on-chip OFC generators.
Specifically I will achieve this goal by:
• Making use of ultra-efficient nonlinear optical interactions based on soliton compression in dispersion engineered III-V waveguides and plasmonic enhanced second order nonlinear materials.
• Enhance the performance of ultra-low noise silicon nitride mode locked lasers with these nonlinear components.