Characterisation of high altitude metabolic phenotype driven by unique Andean ge...
Characterisation of high altitude metabolic phenotype driven by unique Andean genetics.
High-altitude hypoxia is a known physiological stressor. Genetic signals associated with high-altitude adaptation have been identified in populations native to this environment, yet the links to molecular/physiological processes a...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto Champagne
Duración del proyecto: 43 meses
Fecha Inicio: 2020-03-24
Fecha Fin: 2023-10-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
High-altitude hypoxia is a known physiological stressor. Genetic signals associated with high-altitude adaptation have been identified in populations native to this environment, yet the links to molecular/physiological processes affording protection against hypoxic stress, specifically those related to metabolic function, remain largely unknown. Conversely, a significant proportion of Andean highlanders develop chronic mountain sickness (CMS), characterised by excessive erythrocytosis and cardiometabolic dysregulation.
I will combine genotype analysis, RNA sequencing, cardiopulmonary exercise testing, metabolic/lipidomic profiling and mitochondrial function analyses to study high-altitude Andeans with and without excessive erythrocytosis, in order to identify underlying differences in (mal)adaptive (patho)physiology. Applying methods developed by the partner host laboratory, I will examine pre-selected candidate gene variants along with skeletal muscle metabolic phenotype, probed through assessment of mitochondrial capacity for substrate metabolism. Metabolomic/lipidomic analysis of muscle and plasma alongside measures of whole-body exercise performance will demonstrate the impact of these functional changes in vivo.
This multidisciplinary approach will explore the links between adaptive genetic polymorphisms and molecular/physiological processes affording protection against hypoxic stress. It has the potential to further our understanding of the individual metabolic responses to hypoxia by distinguishing healthy adaptive signals from disease-related signatures, and link genetic, metabolic and whole-body physiological function data in the context of CMS. It will provide a foundation for addressing fundamental questions concerning human evolution whilst improving our understanding of highly prevalent hypoxia-related conditions and the metabolic aetiology of these.