Challenging the limits of mechanical quantum metrology
Nano- and micromechanical resonators, with their high coherence and low mass, serve as extremely good sensors of small forces and particles. They are especially powerful in combination with optical laser fields, which can measure...
Nano- and micromechanical resonators, with their high coherence and low mass, serve as extremely good sensors of small forces and particles. They are especially powerful in combination with optical laser fields, which can measure mechanical motion down to the level where quantum mechanics is needed to describe it. The performance of mechanical quantum sensors, and in fact our ability to measure their displacement, is however limited by fundamental concepts: Heisenberg’s uncertainty principle dictates the smallest vibration that can be resolved. And time-reversal symmetry bounds the measurement rate of a sensor. In this project, I challenge both limits – evading them by making nanomechanical resonators interact strongly with temporally controlled and nano-confined light fields.
The experiments I propose will project a macroscopic mechanical object in a pure quantum state, through the mere act of performing a strong measurement. I aim to show that such measurements can entangle the object’s internal degrees of freedom, and can be used to boost metrology performance. By breaking time-reversal symmetry through optical control, I seek to enhance the sensitivity of mechanical force sensors. I will investigate whether the measurement interaction can be employed to coherently convert optical to mechanical states, and to manipulate optical signals down to the single-photon level.
The realization of these goals will radically advance mechanical quantum sensing, create coherent interfaces for quantum communication, and establish novel ways to control light and motion at the quantum level. Moreover, we will gain a new fundamental understanding of metrology and sensing performance in basic systems that transcend the mechanical domain. Finally, these foundational experiments will bring intriguing quantum effects in full view in ‘tangible’ objects, and test whether they can in fact exist at such macroscopic scales.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.