Quantum measurement and control of non-classical mechanical states
Mechanical systems are an essential platform for future quantum science and technologies, such as quantum interfaces, sensors and transducers, and for studies of macroscopic quantum physics. The ability to measure and control macr...
Mechanical systems are an essential platform for future quantum science and technologies, such as quantum interfaces, sensors and transducers, and for studies of macroscopic quantum physics. The ability to measure and control macroscopic non-classical states is an outstanding challenge. The aim of the proposed research is to obtain the motional non-classical states of a macroscopic mechanical oscillator using quantum measurement and control techniques.
The first non-classical state here is a single-phonon Fock state which will be generated by controlling the phonons at a single quantum level. This single-phonon state will be heralded by single photon detection, verified using photon counting statistics, and further reconstructed using state tomography which can completely reveal the non-classicality of the state. The second non-classical state is a squeezed state where either the position or momentum is localized with better precision than the zero-point motion. Achieving the measurement-based preparation of squeezed states requires the usage of quantum measurement techniques, in my case, continuous position measurements with a speed faster than the rate at which noise couples into the position from the momentum.
The experimental demonstrations of the two non-classical states will be performed on millimetre-sized macroscopic membranes with exceptionally high coherence, and even, at temperatures much higher than previous experiments of non-classical nanomechanical oscillators. This will greatly relax the requirements of quantum experiments with macroscopic mechanical systems, and potentially enables new quantum technology at room temperature. The project will pave the way towards advanced quantum state engineering by quantum measurement and control of mechanical motion, building new high-performance quantum devices, and developing and testing potentially transformational new ideas for quantum gravitational decoherence tests and ultraprecise sensing.ver más
15-11-2024:
PERTE CHIP IPCEI ME/...
Se ha cerrado la línea de ayuda pública: Ayudas para el impulso de la cadena de valor de la microelectrónica y de los semiconductores (ICV/ME)
15-11-2024:
REDES
En las últimas 48 horas el Organismo REDES ha otorgado 1579 concesiones
15-11-2024:
DGIPYME
En las últimas 48 horas el Organismo DGIPYME ha otorgado 3 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.