Cavity mediated entanglement of trapped ion qubit arrays for quantum information...
Cavity mediated entanglement of trapped ion qubit arrays for quantum information processing
Long-coherence times, high-fidelity individual-ion control and entanglement-mediating Coulomb interactions make trapped-ion qubits a very attractive platform for quantum information processing (QIP). Entangling gates performed by...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CMEQIP
Cavity mediated entanglement of trapped ion qubit arrays for...
270K€
Cerrado
40CACQED
Entanglement with trapped ions in an optical cavity
163K€
Cerrado
TRICE QFT
TRapped Ion Coherent Execution of Quantum Fourier Transform
171K€
Cerrado
43CAQIP
High fidelity quantum gates with trapped 43Ca ions
160K€
Cerrado
QIPID
Quantum Information Processing with Trapped Ion Qudits
186K€
Cerrado
iQIT
Integrated Quantum Information Technology
3M€
Cerrado
Información proyecto photonicIons
Duración del proyecto: 65 meses
Fecha Inicio: 2018-04-26
Fecha Fin: 2023-10-12
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Long-coherence times, high-fidelity individual-ion control and entanglement-mediating Coulomb interactions make trapped-ion qubits a very attractive platform for quantum information processing (QIP). Entangling gates performed by coupling the internal states of ions in the same potential well via their shared motional mode have recently reached the high fidelities necessary for the implementation of quantum error correction protocols which can enable fault-tolerant QIP. However, scaling this type of gate up to long ion chains (>20 ions) is not feasible: large ion numbers lead to crowding of the motional mode spectrum of the chain, eventually preventing addressing of specific modes. Cavity-mediated ion-photon coupling is a promising avenue to scalability. Photons emitted into a shared cavity mode can be used as a quantum bus to entangle short ion arrays. If implemented between arrays of N ions, this photonic interface benefits from an N-fold enhancement of the ion-photon coupling. Strong collective coupling has been shown with neutral atoms and 3D ion crystals, but has not been performed in a system with individual-qubit control and Coulomb-mediated entanglement capabilities. Prof.Vuletic’s MIT group operates a multi-zone ion trap which holds several linear ion arrays (of up to 20 ions each) spaced along the trap axis and features an integrated macroscopic optical cavity. Cooperativity measurements indicate that the strong-coupling regime should be achievable with this apparatus for cavity-mediated entanglement of arrays as short as 5 ions in length. As an MSCA fellow, I will use this trap to pursue the first demonstration of cavity-mediated entanglement of two spatially separate ion arrays. Upon returning, I will join ETH's effort to integrate micro-machined cavities into ion traps and use them to demonstrate strong ion-cavity coupling in a scalable environment, an essential step in the drive to build large-scale photonically-interfaced quantum computers.