Cascade synthesis of ethanol and acetate via microbial fermentation of syngas pr...
Cascade synthesis of ethanol and acetate via microbial fermentation of syngas produced photoelectrochemically by molecular catalysts on BiVO4 perovskite tandem artificial leaf
The photoelectrochemical conversion of the greenhouse gas carbon dioxide (CO2) to energy-rich chemicals and fuels is an attractive strategy towards climate change remediation and a circular carbon economy. However, the renewable s...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
ConCO2rde
Training network on the conversion of CO2 by smart autotroph...
3M€
Cerrado
CTM2010-15796
OPTIMIZACION DE LA CONVERSION DE GAS DE SINTESIS Y EFLUENTES...
92K€
Cerrado
VIVALDI
innoVative bIo based chains for CO2 VALorisation as aDded va...
7M€
Cerrado
BIO-ELECTRO-ETHYLENE
Integrated Bio Electrochemical Production of Ethylene throug...
177K€
Cerrado
PID2021-124347OB-I00
BIOPROCESOS AVANZADOS PARA LA BIOCONVERSION DEL GAS DE SINTE...
290K€
Cerrado
ATMESPHERE
Advanced Technology for Microbial Electro Synthesis of Platf...
161K€
Cerrado
Información proyecto MicrobialLEAF
Duración del proyecto: 37 meses
Fecha Inicio: 2020-04-15
Fecha Fin: 2023-05-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The photoelectrochemical conversion of the greenhouse gas carbon dioxide (CO2) to energy-rich chemicals and fuels is an attractive strategy towards climate change remediation and a circular carbon economy. However, the renewable synthesis of complex organic molecules using solar power still faces several challenges for practical application. Current synthetic systems, which can reach high light absorption and charge separation efficiencies, still rely on the use of expensive materials with improvable specificity for the generated products. On the other hand, biological systems such as microbes are far superior performing complex catalytic chemistry (C-C coupling, multi-electron catalysis) with high product specificity. The synergistic combination of synthetic and biological components enables novel synthesis pathways, otherwise inaccessible abiotically, to generate useful chemicals and fuels with higher efficiency and product specificity. The proposed project aims to build a proof-of-concept microbial hybrid artificial leaf to generate ethanol and acetate via fermentation of hydrogen and carbon monoxide (syngas) produced by molecular catalysts immobilized on an artificial leaf. The molecular catalysts will be embedded in a highly porous carbon-based cathode to generate the syngas from aqueous CO2 to feed locally the bacterium Clostridium ljungdahlii within the pores, a novel approach compared to current decoupled microbial hybrid systems. The proposed artificial leaf will integrate state-of-the-art BiVO4 and perovskite components, for efficient light absorption, charge separation and water oxidation, with the cathode. This microbial leaf will be the first example of cascade catalysis where molecular catalysts and microbes will work together to produce multi-carbon products, enabling the study of abiotic-biotic interfaces key to design new materials for improved solar (bio)chemicals generation.