Breaking resolution limits in ultrafast X-ray diffractive imaging
Our ability to observe processes and study function at the nanoscale is hindered by the compromise between temporal and spatial resolutions inherent to the majority of far-field imaging techniques. This limits our perspective on a...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SPICIX
Single nano Particle Imaging with Coherent Intense soft X ra...
177K€
Cerrado
FIS2014-51478-ERC
IMAGEN DE LA ESTRUCTURA MOLECULAR USANDO AUTODIFRACCION DE E...
85K€
Cerrado
AXSIS
Frontiers in Attosecond X ray Science Imaging and Spectrosc...
14M€
Cerrado
ATTOCHEM
Attosecond imaging and control of chemical dynamics
243K€
Cerrado
PID2021-122839NB-I00
ESTUDIOS TEORICOS Y EXPERIMENTALES DE LA DINAMICA DE COLISIO...
309K€
Cerrado
XLASERS
X RAY LASERS PHOTON SCIENCE AND STRUCTURAL BIOLOGY
3M€
Cerrado
Información proyecto HIGH-Q
Duración del proyecto: 59 meses
Fecha Inicio: 2022-04-01
Fecha Fin: 2027-03-31
Líder del proyecto
UNIVERSITY OF HAMBURG
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Our ability to observe processes and study function at the nanoscale is hindered by the compromise between temporal and spatial resolutions inherent to the majority of far-field imaging techniques. This limits our perspective on a wide range of non-equilibrium processes at the nanoscale such as chemical/catalytic reactions, ultrafast phase-transitions and biological processes at room temperature in native phase. Intense and spatially coherent femtosecond-short X-ray flashes from free-electron laser (XFEL) sources can combine high spatial and temporal resolutions through 'diffraction-before-destruction' coherent diffractive imaging (CDI) of individual nano-specimens within a single exposure. XFEL CDI studies have found surprising variety of morphologies in soot, unknown metastable shapes of metal nanoparticles and exotic states of water, which are otherwise inaccessible. PI and colleagues applied this technique to follow an ultrafast irreversible laser-superheating process with few nanometers spatial and 100 femtosecond temporal resolutions at the single nanoparticle level. Despite significant efforts, the spatial resolution of single XFEL CDI images of non-periodic specimen could not be improved beyond few nanometers. This proposal will overcome this limit by exploiting previously little explored phenomena which arise when specimen are exposed to newly available intense 500 attosecond to few femtosecond short FEL pulses. All matter exposed to intense X-rays is photo-ionised. When XFEL pulses are comparable or shorter than subsequent relaxation processes, non-linear effects such as transient resonances and resonant stimulated emission increase the brightness of images by several orders of magnitudes and significantly improve the spatial resolution. In combination with sparsity based reconstruction algorithms this proposal will push ultrafast CDI towards the single macromolecule limit and open novel avenues for photochemistry, catalysis, and material studies.