Attosecond imaging and control of chemical dynamics
Femtosecond laser pulses can be exploited to trace the ultrafast motion of electrons (attosecond physics) and study the properties of molecules, and the changes they undergo, on the atomic scale (femtochemistry). Suitable tailorin...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FIS2013-42002-R
COMPUTACION EN CIENCIA DE ATTOSEGUNDOS Y DE MATERIALES: DERR...
230K€
Cerrado
QuantXS
Quantum Controlled X-ray Spectroscopy of Elementary Molecula...
1M€
Cerrado
PID2021-122839NB-I00
ESTUDIOS TEORICOS Y EXPERIMENTALES DE LA DINAMICA DE COLISIO...
309K€
Cerrado
ELYCHE
Electron scale dynamics in chemistry
2M€
Cerrado
ATTOMO
Attosecond dynamics in molecular systems
45K€
Cerrado
DYNAMICOL
Ultrafast Charge Transfer in ion atom collision investigated...
30K€
Cerrado
Información proyecto ATTOCHEM
Duración del proyecto: 43 meses
Fecha Inicio: 2015-03-26
Fecha Fin: 2018-11-16
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Femtosecond laser pulses can be exploited to trace the ultrafast motion of electrons (attosecond physics) and study the properties of molecules, and the changes they undergo, on the atomic scale (femtochemistry). Suitable tailoring of the laser fields even allows for controlling the electron and nuclear dynamics within molecules and thereby steer chemical reactions towards a desired outcome (coherent control). Despite a wide range of perspective applications in fundamental science and industry, our capabilities to exert control on chemical reactions, and our understanding thereof, have been very limited. In the proposed work, I will develop and employ a novel experimental technique, which will allow (a) controlling light-induced chemical reactions in a wide range of molecular species efficiently, and (b) imaging the electron and nuclear dynamics underlying such reactions on their natural timescales. My work will go significantly beyond the state-of-the-art and thus contribute to the development of coherent control and our microscopic understanding of photochemical reactions. The advancements become possible by combining the latest laser technology with the expertise of all participants. The proposed MSCA will complement my scientific skills, both experimental and theoretical, and will provide me with required transferable skills to reach my long-term goal of establishing my own research group in Europe. The new scientific development will contribute to consolidating the European Leadership in the field of Attosecond Physics.