Big Time Series Analytics for Complex Economic Decisions
Big time series data are commonplace in economics. Their variety and sheer size provide nearly endless opportunities to improve economic decision making at European governments, companies and universities: amongst others, internet...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
ECO2012-38442
METODOS ESTADISTICOS AVANZADOS PARA DATOS COMPLEJOS
133K€
Cerrado
ECO2012-32854
NUEVOS METODOS DE PREDICCION PARA DATOS MACROECONOMICOS Y FI...
26K€
Cerrado
PID2019-108079GB-C21
PREDICCION DE SERIES TEMPORALES NO ESTACIONARIAS DE GRANDES...
30K€
Cerrado
ECO2008-05080
TECNICAS ESTADISTICAS PARA DATOS DE GRAN COMPLEJIDAD EN EMPR...
62K€
Cerrado
ECO2011-25706
ANALISIS DE DATOS DE MUY ALTA DIMENSION EN ECONOMIA Y EMPRES...
67K€
Cerrado
Información proyecto BigTime
Duración del proyecto: 24 meses
Fecha Inicio: 2019-04-11
Fecha Fin: 2021-04-30
Líder del proyecto
UNIVERSITEIT MAASTRICHT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
176K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Big time series data are commonplace in economics. Their variety and sheer size provide nearly endless opportunities to improve economic decision making at European governments, companies and universities: amongst others, internet search data could shed light on consumer sentiment, social media provide opportunities for improving economic policy analysis, and high-frequency volatility data could be informative for financial risk analysis.
While the expansion of these Big Data sources bring possibilities, it also raises ever-increasing statistical challenges since novel methods (for instance, 'penalized' methods) are needed to estimate high-dimensional models containing many parameters. The development of such methods has flourished in the statistical learning community, but they are not geared towards the specificities of economic time series. Econometric time series models typically differ from traditional statistical models in that they require (i) an accurate assessment of the certainty of the economic findings and predictions, (ii) a description of how the economy responds, over time, to exogenous shocks, and (iii) an identification strategy that maps the observed data to the relevant economic parameters of interest. The proposal builds a partnership between econometrics, statistics and machine learning with the aim of addressing these three econometric objectives. It develops statistical learning methods for (i) honest uncertainty quantification (inference), (ii) interpretable economic impulse response functions analysis and (iii) identification of high-dimensional time series models. The suitability of the developed Big Time Series methods is demonstrated for economic applications including financial risk analysis and macro-economic policy analysis.
As such, the proposal provides a Big Time Series Analytics toolbox to modern empirical economists that aims to support and improve economic decision making in big, dynamic and complex time series problems.