Innovating Works

TEC1p

Financiado
Big Data Analytics for the Thermal and Electrical Conductivity of Materials from...
Big Data Analytics for the Thermal and Electrical Conductivity of Materials from First Principles "Thermal conductivity (TC) is a key characteristic of many materials, particularly those used in the energy and environment sectors (thermoelectrics, thermal-barrier coatings, catalysis, etc.). However, TC is largely unknown − of... "Thermal conductivity (TC) is a key characteristic of many materials, particularly those used in the energy and environment sectors (thermoelectrics, thermal-barrier coatings, catalysis, etc.). However, TC is largely unknown − of the 225,000 identified inorganic semiconductor and insulator crystals, only 100 have any TC data available. By combining a novel ab initio molecular dynamics TC theory and big-data analytics (machine learning, compressed sensing, subgroup discovery), we will generate quantitative values and understanding of TC (and electrical conductivity (EC)) for most of these 225,000 materials, as well as for materials not yet discovered. TEC1p will develop and deploy five key approaches. Individually these are already novel for materials science, but their combination in TEC1p enables a true breakthrough. These five components are: 1) Ab initio theory of TC 3 (advanced density-functional theory, seamlessly linked to size- and time-converged statistical mechanics). 2) Ab initio theory of EC (advanced …; see #1). 3) Compressed sensing to identify a set of physical parameters that describe the TC and EC behaviour and to derive predictive equations that work for all materials.5 4) Active learning to build a systematic big-data database of materials, their TCs and ECs. 5) Subgroup discovery to recognise trends and anomalies in the big data, enhance the active learning, and elucidate the underlying physical mechanisms. In analogy to Mendeleev’s table of the elements, we will build maps that arrange existing and predicted materials according to their TC and EC properties. The methods that we will develop and the extensive calculations that we will execute are both innovative and timely. They will greatly progress scientific knowledge of the physical properties of materials. The impact of the concepts, methodology, and results will be far reaching for materials science, novel materials discovery, engineering," ver más
30/09/2024
MPG
2M€
Duración del proyecto: 88 meses Fecha Inicio: 2017-05-19
Fecha Fin: 2024-09-30

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2024-09-30
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2016-ADG: ERC Advanced Grant
Cerrada hace 8 años
Presupuesto El presupuesto total del proyecto asciende a 2M€
Líder del proyecto
MAXPLANCKGESELLSCHAFT ZUR FORDERUNG DER WISSE... No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5