Bayesian Neural Networks for Bridging the Gap Between Machine Learning and Econo...
Bayesian Neural Networks for Bridging the Gap Between Machine Learning and Econometrics
The complexity and volume of financial data in modern financial markets have been exponentially growing during the last decades. Machine learning (ML) methods such as Deep learning (DL) have been widely utilized for several classi...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
ECO2012-35029
TECNICAS ESTADISTICAS NO PARAMETRICAS Y BAYESIANAS PARA EL A...
26K€
Cerrado
ECO2009-08100
LA INCERTIDUMBRE EN LA PREDICCION MACROECONOMICA Y FINANCIER...
97K€
Cerrado
ECO2012-32854
NUEVOS METODOS DE PREDICCION PARA DATOS MACROECONOMICOS Y FI...
26K€
Cerrado
CryptoVolatility
New realistic and robust models for cryptocurrency volatili...
191K€
Cerrado
BigTime
Big Time Series Analytics for Complex Economic Decisions
176K€
Cerrado
Información proyecto BNNmetrics
Duración del proyecto: 30 meses
Fecha Inicio: 2020-03-25
Fecha Fin: 2022-09-30
Líder del proyecto
AARHUS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
207K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The complexity and volume of financial data in modern financial markets have been exponentially growing during the last decades. Machine learning (ML) methods such as Deep learning (DL) have been widely utilized for several classification and prediction problems, given their intrinsic flexibility, appropriateness for large multidimensional problems, and ability to discover and adapt to non-linear patterns. However, the enormous number of parameters, their difficult interpretation and inability do deal with uncertainties represent DL’s main shortcomings. On the other hand, classic econometrics methods, of limited variables, great interpretability and with excellent probabilistic properties, have failed to prove appropriate for the analysis of modern high-frequency data. The application in financial econometrics of a DL sub-class of algorithms known as Bayesian neural networks (BNNs) is expected to revolutionize the process of modeling, analyzing, and understanding trading behavior in real markets. BNNs’ attractive properties have the potential of bridging the gap between classic econometrics and ML. This research will show measurable improvements over the current state of the art, both from the financial econometrics and the ML sides, in three problems defined on high-frequency financial data: volatility modeling, stock mid-price movement prediction, and interdependence analysis between stock prices.