Bayesian Neural Networks for Bridging the Gap Between Machine Learning and Econo...
The complexity and volume of financial data in modern financial markets have been exponentially growing during the last decades. Machine learning (ML) methods such as Deep learning (DL) have been widely utilized for several classi...
The complexity and volume of financial data in modern financial markets have been exponentially growing during the last decades. Machine learning (ML) methods such as Deep learning (DL) have been widely utilized for several classification and prediction problems, given their intrinsic flexibility, appropriateness for large multidimensional problems, and ability to discover and adapt to non-linear patterns. However, the enormous number of parameters, their difficult interpretation and inability do deal with uncertainties represent DL’s main shortcomings. On the other hand, classic econometrics methods, of limited variables, great interpretability and with excellent probabilistic properties, have failed to prove appropriate for the analysis of modern high-frequency data. The application in financial econometrics of a DL sub-class of algorithms known as Bayesian neural networks (BNNs) is expected to revolutionize the process of modeling, analyzing, and understanding trading behavior in real markets. BNNs’ attractive properties have the potential of bridging the gap between classic econometrics and ML. This research will show measurable improvements over the current state of the art, both from the financial econometrics and the ML sides, in three problems defined on high-frequency financial data: volatility modeling, stock mid-price movement prediction, and interdependence analysis between stock prices.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.