Automated Synthesis of Stochastic Cyber-Physical Systems: A Robust Approach
Cyber-physical systems (CPS) are complex systems with tight interactions between cyber elements and physical components. The cyber elements are control algorithms implemented by computer-based software. Developing the embedded con...
Cyber-physical systems (CPS) are complex systems with tight interactions between cyber elements and physical components. The cyber elements are control algorithms implemented by computer-based software. Developing the embedded control software for CPS is currently ad hoc and error-prone, which has created costly undesired behaviours, particularly in safety-critical applications. Examples of such undesired behaviours include frequency deviation in power networks causing outages or blackouts (e.g., in Jan 2021 in EU, affecting 200k households), crash of airplanes due to software bugs (Boeing 737 Max, costs 15.9 billion euros) or autonomous cars having software bugs (Toyota recalled 65,000 cars in 2015). Nowadays, most of the costs of CPS design is spent on ensuring that the system meets all the requirements especially when it is working in uncertain conditions. In order to design reliable CPS and to reduce the costs of such a design, I propose a novel robust synthesis approach that computes automatically the control software from high-level requirements. This novel approach creates a paradigm shift in CPS design as it computes control software in a push-button manner and eliminates time-consuming, costly post-validation steps. The approach tackles the CPS complexity by developing new abstraction techniques that are compositional and robust to model uncertainties, which will be integrated in a unified framework for automating the design of the control software. This synthesis paradigm is founded on novel compositional similarity relations with coupled uncertainties and coupled computations on abstract models. My project is high-risk because it requires merging and re-thinking different design methodologies from multiple disciplines including control theory, computer science, and probability theory. It is high-gain since it will transform the design principles of CPS to enable designing large-scale yet reliable and safe CPS working autonomously in uncertain conditions.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.