Trains, planes, and other safety- and security-critical systems that our society relies on are controlled by computer systems, as is much of our critical infrastructure, including the power grid and cellular networks. But can we t...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto SafeSecS
Duración del proyecto: 63 meses
Fecha Inicio: 2021-06-13
Fecha Fin: 2026-09-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Trains, planes, and other safety- and security-critical systems that our society relies on are controlled by computer systems, as is much of our critical infrastructure, including the power grid and cellular networks. But can we trust in the safety and security of these systems?
The starting point of SafeSecS is the observation that today’s hardware-software abstractions, instruction set architectures (ISAs), are fundamentally inadequate for the development of safe or secure systems. Indeed, ISAs abstract from timing, making it impossible to develop safety-critical systems that have to satisfy real-time constraints on top of them. Neither do ISAs provide sufficient security guarantees, making it impossible to develop secure systems on top of them. As a consequence, engineers are forced to rely on brittle timing and security models that are proven wrong time and again, as evidenced e.g. by the recent Spectre attacks; putting our society at risk.
SafeSecS will attack the problem at its root by introducing a framework centered around hardware-software contracts that extend the guarantees provided by ISAs to capture key non-functional properties. Hardware-software contracts formally capture the expectations on correct hardware implementations and they lay the foundation for achieving safety and security guarantees as the software level. Below the hardware-software interface, SafeSecS will contribute modular design principles and tools to construct microarchitectures that provably satisfy a given hardware-software contract. Above the hardware-software interface, SafeSecS will develop rigorous, precise, and scalable techniques to guarantee key safety and security properties at the software level on top of hardware-software contracts. As a whole, SafeSecS will enable the systematic engineering of safe and secure hardware-software systems we can trust in.