Speed and performances of contemporary digital electronics are limited by the available device architectures and heat dissipation. Two-dimensional (2D) materials are emerging as one of the main candidates for designing new structu...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FIS2016-76617-P
EXCITACIONES ELECTRONICAS EN SUPERFICIES Y NANOSTRUCTURAS
193K€
Cerrado
EMERGE
Tuning Emergent Phases in 2D Materials
178K€
Cerrado
DCCM
Dynamically controlling the properties of complex materials...
100K€
Cerrado
ATTOMO
Attosecond dynamics in molecular systems
45K€
Cerrado
AlterMateria
Designer Quantum Materials Out of Equilibrium
1M€
Cerrado
Información proyecto AuDACE
Duración del proyecto: 64 meses
Fecha Inicio: 2019-09-10
Fecha Fin: 2025-01-31
Líder del proyecto
POLITECNICO DI MILANO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Speed and performances of contemporary digital electronics are limited by the available device architectures and heat dissipation. Two-dimensional (2D) materials are emerging as one of the main candidates for designing new structures capable to overcome the current device limitations and foster the establishment of the electronics of the future. Due to the electron confinement in two directions, they are characterised by exotic physical, electronic and chemical properties, which are neither fully investigated nor understood. In particular, the lack of suitable tools hinders the possibility to study the ultrafast processes unfolding during light-matter interaction. Nevertheless, a clear understanding is required in order to leverage the unique properties of 2D materials. AuDACE aims to enter this unexplored region and investigate ultrafast electron, exciton and spin dynamics happening in advanced materials on time scales below few femtoseconds with unprecedented and ground-breaking possible outcome.
To reach this ambitious goal AuDACE will go beyond the state of the art and develop an innovative pump-probe beamline for transient absorption and reflectivity measurements based on arbitrarily polarised attosecond pulses in a two-foci geometry. Once the experimental techniques are established, my team and I will concentrate on ultrafast exciton dynamics in monolayer transition metal dichalcogenides (ML-TMDCs). In the final phase, AuDACE will focus on a new class of materials such as ferromagnetic ML-TMDCs to investigate the elusive physical mechanism responsible for ultrafast spin and magnetic dynamics. For the first time, a comprehensive investigation of these phenomena will become feasible on these little studied time scales. Due to the wide spectrum of relevant applications for 2D materials, I expect the outcome of AuDACE to have a crucial impact on the development of many key technological areas like optoelectronics, spintronics, valleytronics and photovoltaics.