Recently, ‘designer’ quantum materials, synthesised layer by layer, have been realised, sparking ground-breaking new scientific insights. These artificial materials, such as oxide heterostructures, are interesting building blocks...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
Q-MAC
Frontiers in Quantum Materials Control
10M€
Cerrado
DCCM
Dynamically controlling the properties of complex materials...
100K€
Cerrado
AuDACE
Attosecond Dynamics in Advanced Materials
1M€
Cerrado
QuantuMDs
Quantum Materials for Quantum Devices
2M€
Cerrado
DELIGHT
Discovering light-induced phases by first-principles materia...
2M€
Cerrado
EMERGE
Tuning Emergent Phases in 2D Materials
178K€
Cerrado
Información proyecto AlterMateria
Duración del proyecto: 63 meses
Fecha Inicio: 2016-02-26
Fecha Fin: 2021-05-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Recently, ‘designer’ quantum materials, synthesised layer by layer, have been realised, sparking ground-breaking new scientific insights. These artificial materials, such as oxide heterostructures, are interesting building blocks for a new generation of technologies, provided that one is able to access, study and ultimately control their quantum phases in practical conditions such as at room temperature and high speeds.
On the other hand, an independent research area is emerging that uses ultra-short bursts of light to stimulate changes in the macroscopic electronic properties of solids at unprecedented speeds.
Here I propose to bridge the gap between material design and ultrafast control of solids. This new synergy will allow us to explore fundamental research questions on the non-equilibrium dynamics of quantum materials with competing ground states. Specifically, I will utilize intense THz and mid-infrared electromagnetic fields to manipulate the electronic properties of artificial quantum materials on pico- to femto-second time scales. Beyond the development of novel techniques to generate THz electric fields of unprecedented intensity, I will investigate metal-insulator and magnetic transitions in oxide heterostructures as they unfold in time. This research programme takes oxide electronics in a new direction and establishes a new methodology for the control of quantum phases at high temperature and high speed.