Artificial Neural Networks for the Prediction of Contrails and Aviation Induced...
Contrails and aviation-induced cloudiness effects on climate change show large uncertainties since they are subject to meteorological, regional, and seasonal variations. Indeed, under some specific circumstances, aircraft can gene...
Contrails and aviation-induced cloudiness effects on climate change show large uncertainties since they are subject to meteorological, regional, and seasonal variations. Indeed, under some specific circumstances, aircraft can generate anthropogenic cirrus with cooling. Thus, the need for research into contrails and aviation-induced cloudiness and its associated uncertainties to be considered in aviation climate mitigation actions becomes unquestionable.
We will blend cutting-edge AI techniques (deep learning) and climate science with application to the aviation domain, aiming at closing (at least partially) de existing gap in terms of understanding aviation-induced climate impact.
The overall purpose of E-CONTRAIL project is to develop artificial neural networks (leveraging remote sensing detection methods) for the prediction of the climate impact derived from contrails and aviation-induced cloudiness, contributing, thus, to a better understanding of the non-CO2 impact of aviation on global warming and reducing their associated uncertainties as essential steps towards green aviation.
Specifically, the objectives of E-CONTRAIL are:
O-1 to develop remote sensing algorithms for the detection of contrails and aviation-induced cloudiness.
O-2 to quantify the radiative forcing of ice clouds based on remote sensing and radiative transfer methods.
O-3 to use of deep learning architectures to generate AI models capable of predicting the radiative forcing of contrails based on data-archive numerical weather forecasts and historical traffic
O-4 to assess the climate impact and develop a visualization tool in a dashboard
Upon successful achievement of the objectives described above, we ambition to provide aviation stakeholders with an early and accurate (thus, reducing the associated uncertainty) prediction of those volumes of airspace with the conditions for large global warming impact due to contrails and aviation-induced cloudiness.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.