Amorphous topological matter: Predicting new phases with enhanced properties in...
Amorphous topological matter: Predicting new phases with enhanced properties in a vast pool of amorphous materials
Discovering new phases of matter in materials with superior properties is a central goal of condensed matter physics. Topological phases are a remarkable example: their robust and universal properties are key to groundbreaking te...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TOPMAT
Topological Materials New Fermions Realization of Single C...
2M€
Cerrado
CompositeSPTphases
Composite particle approach to Symmetry Protected Topologica...
195K€
Cerrado
SPINSINQUASICRYSTALS
Magnetic Moments in Geometrically Frustrated Systems with Qu...
222K€
Cerrado
PID2020-120614GB-I00
PROPIEDADES ESPECTRALES Y DE TRANSPORTE DE MATERIALES CUANTI...
105K€
Cerrado
HITSUPERJU
Higher dimensional topological solids realized with multiter...
2M€
Cerrado
UNICOSMOS
Unravelling the intertwined correlated states of matter in m...
173K€
Cerrado
Información proyecto TOPOMORPH
Duración del proyecto: 64 meses
Fecha Inicio: 2022-04-26
Fecha Fin: 2027-08-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Discovering new phases of matter in materials with superior properties is a central goal of condensed matter physics. Topological phases are a remarkable example: their robust and universal properties are key to groundbreaking technologies, notably robust quantum computation based on topological superconductors. However, our methodology to discover and classify topological materials relies heavily on crystal symmetry, thereby overlooking the largest, most affordable and scalable pool of materials - amorphous materials. Amorphous matter can outperform crystals, and is ubiquitous in technology: e.g. amorphous bismuth superconducts below 6K, a temperature 10,000 times larger than crystal bismuth, and amorphous silicon makes large-area solar cells affordable. This raises the fundamental question of whether we have overlooked new topological phases intrinsic to amorphous matter in materials with properties unparalleled by crystals. It is also unknown if any amorphous superconductor is topological. The core objective of this project is to harvest the superior properties of the vast pool of amorphous solids to find fundamentally distinct topological phases with high technological potential, via three specific goals: 1. Establish a predictive methodology to unlock the vast pool of amorphous matter to discover new topological materials. 2. Use this methodology to define unaccounted for amorphous topological phases with superior capabilities and no crystal analogues. 3. Use the above to predict the first amorphous topological superconductors. These goals will establish amorphous topological matter as a radically new direction to solve the challenge of finding novel platforms for topological superconductivity, where robust quantum computers can be based. This project will establish the necessary and currently absent theoretical background, guaranteeing a long-term impact on how we understand and discover new phases of matter with superior properties.