This project aims at designing novel hybrid nanophotonic devices comprising metallic nanostructures and active elements such as dye molecules or colloidal quantum dots. Three core objectives, each going far beyond the state of the...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PhoLED
Photonic nanostructures for Light Emitting Devices.
158K€
Cerrado
aQUARiUM
QUAntum nanophotonics in Rolled Up Metamaterials
1M€
Cerrado
FIS2016-80174-P
NANOPLASMONICA CUANTICA PARA EL DESARROLLO DEL CONTROL ACTIV...
133K€
Cerrado
ANTOMIC
Quantum nanoantennas for atomic scale optical spectroscopy
100K€
Cerrado
FASTQUANTUM
Ultrafast Sepctroscopy of Quantum Structures
165K€
Cerrado
Información proyecto ACTIVENP
Líder del proyecto
UNIVERSITAT LINZ
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This project aims at designing novel hybrid nanophotonic devices comprising metallic nanostructures and active elements such as dye molecules or colloidal quantum dots. Three core objectives, each going far beyond the state of the art, shall be tackled: (i) Metamaterials containing gain materials: Metamaterials introduce magnetism to the optical frequency range and hold promise to create entirely novel devices for light manipulation. Since present day metamaterials are extremely absorptive, it is of utmost importance to fight losses. The ground-breaking approach of this proposal is to incorporate fluorescing species into the nanoscale metallic metastructures in order to compensate losses by stimulated emission. (ii) The second objective exceeds the ansatz of compensating losses and will reach out for lasing action. Individual metallic nanostructures such as pairs of nanoparticles will form novel and unusual nanometre sized resonators for laser action. State of the art microresonators still have a volume of at least half of the wavelength cubed. Noble metal nanoparticle resonators scale down this volume by a factor of thousand allowing for truly nanoscale coherent light sources. (iii) A third objective concerns a substantial improvement of nonlinear effects. This will be accomplished by drastically sharpened resonances of nanoplasmonic devices surrounded by active gain materials. An interdisciplinary team of PhD students and a PostDoc will be assembled, each scientist being uniquely qualified to cover one of the expertise fields: Design, spectroscopy, and simulation. The project s outcome is twofold: A substantial expansion of fundamental understanding of nanophotonics and practical devices such as nanoscopic lasers and low loss metamaterials.