ABYSS Assessment of bacterial life and matter cycling in deep sea surface sedi...
ABYSS Assessment of bacterial life and matter cycling in deep sea surface sediments
The deep-sea floor hosts a distinct microbial biome covering 67% of the Earth’s surface, characterized by cold temperatures, permanent darkness, high pressure and food limitation. The surface sediments are dominated by bacteria, w...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2019-110011RB-C32
UN ENFOQUE DE ESTUDIO DE LA ECOLOGIA MICROBIANA BASADO EN RA...
111K€
Cerrado
PID2020-118877GB-I00
DIVERSIFICACION GENOMICA, ADAPTACION AMBIENTAL E INTERACCION...
191K€
Cerrado
EUR2021-121995
EVOLUCION DEL NICHO TERMICO EN PROCARIOTAS Y SU RESPUESTA AL...
96K€
Cerrado
MEDEA
Microbial Ecology of the DEep Atlantic pelagic realm
3M€
Cerrado
RTI2018-100690-B-I00
ROL DE LAS DESATURASAS DE ACIDOS GRASOS EN LA DISTRIBUCION D...
242K€
Cerrado
HADES
Benthic diagenesis and microbiology of hadal trenches
3M€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The deep-sea floor hosts a distinct microbial biome covering 67% of the Earth’s surface, characterized by cold temperatures, permanent darkness, high pressure and food limitation. The surface sediments are dominated by bacteria, with on average a billion cells per ml. Benthic bacteria are highly relevant to the Earth’s element cycles as they remineralize most of the organic matter sinking from the productive surface ocean, and return nutrients, thereby promoting ocean primary production. What passes the bacterial filter is a relevant sink for carbon on geological time scales, influencing global oxygen and carbon budgets, and fueling the deep subsurface biosphere. Despite the relevance of deep-sea sediment bacteria to climate, geochemical cycles and ecology of the seafloor, their genetic and functional diversity, niche differentiation and biological interactions remain unknown. Our preliminary work in a global survey of deep-sea sediments enables us now to target specific genes for the quantification of abyssal bacteria. We can trace isotope-labeled elements into communities and single cells, and analyze the molecular alteration of organic matter during microbial degradation, all in context with environmental dynamics recorded at the only long-term deep-sea ecosystem observatory in the Arctic that we maintain. I propose to bridge biogeochemistry, ecology, microbiology and marine biology to develop a systematic understanding of abyssal sediment bacterial community distribution, diversity, function and interactions, by combining in situ flux studies and different visualization techniques with a wide range of molecular tools. Substantial progress is expected in understanding I) identity and function of the dominant types of indigenous benthic bacteria, II) dynamics in bacterial activity and diversity caused by variations in particle flux, III) interactions with different types and ages of organic matter, and other biological factors.