aB IniTio calculations and MAchine learning for suPerconducting collective pheno...
aB IniTio calculations and MAchine learning for suPerconducting collective phenomena in novel materials
"The aim of the BITMAP project ""aB-IniTio calculations and MAchine learning for suPerconducting collective phenomena in novel materials"" is to propose a workflow based on the combination of realistic Density Functional Theory (D...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
RTI2018-098452-B-I00
NUEVOS FENOMENOS Y APLICACIONES DE MATERIALES TOPOLOGICOS FU...
73K€
Cerrado
PGC2018-093863-B-C21
ESTRUCTURA ELECTRONICA Y PROPIEDADES DE MOLECULAS Y SOLIDOS
254K€
Cerrado
PID2021-125343NB-I00
CORRELACIONES, SUPERCONDUCTIVIDAD Y TOPOLOGIA EN MATERIALES...
139K€
Cerrado
PGC2018-094684-B-C21
CARACTERISTICAS UNIFICADORAS EN EL ESTUDIO DE LA COMPLEJIDAD...
114K€
Cerrado
STATOPINS
Theory of statistical topological insulators
1M€
Cerrado
PROMISE
ab initio PRediction Of MaterIal SynthEsis
1M€
Cerrado
Información proyecto BITMAP
Duración del proyecto: 45 meses
Fecha Inicio: 2020-04-10
Fecha Fin: 2024-01-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
"The aim of the BITMAP project ""aB-IniTio calculations and MAchine learning for suPerconducting collective phenomena in novel materials"" is to propose a workflow based on the combination of realistic Density Functional Theory (DFT) calculations with the Renormalization Group (RG) approach to superconducting Fermi surface instabilities. The latter is based on the pioneering work of Kohn-Luttinger where one can integrate out the high energy degrees of freedom perturbatively, and obtain effective attractive BCS interactions in non-s-wave channels. Once the superconducting pairing is known, as encoded in the superconducting gap function, a machine learning-based diagnostic procedure of the topological properties will be performed, upon the creation of specific ad-hoc convolutional neural networks. The project will allow the experience researcher to merge his present skills in the computational modeling of complex materials with modern concepts of machine learning, a sector that nowadays is expanding fast enough to easily foresee its applications in everyday life."