A Sequence Classification Framework for Human Language Technology
This project will develop a unifying framework of novel methods for sequence classification and thus make a major break-through in automatic speech recognition and machine translation, advancing these areas of human language techn...
This project will develop a unifying framework of novel methods for sequence classification and thus make a major break-through in automatic speech recognition and machine translation, advancing these areas of human language technology (HLT) beyond state-of-the-art. Despite the huge progress made in the field, the specific aspect of sequence classification has not been addressed adequately in the past research in these disciplines and remains a big challenge. The proposed project will provide a novel framework under consistent consideration of the leading aspect of sequence classification. It will break the ground for a deeper, more comprehensive foundation for sequence classification and pave the way for a new generation of algorithms that will put human language technology on a more solid basis and that will accelerate progress in the field across several disciplines.
The leading research objectives are: 1. A novel theoretical framework for sequence classification. 2. Consistent sequence modeling across training and testing, which is specifically lacking in machine translation. 3. Adequate sequence-level performance-aware training criteria to learn the free parameters of the models. 4. Investigation of (true) unsupervised training for HLT sequence classification: its principles, its prerequisites, its limitations and its practical usage. The study of these four problems will provide key enabling techniques for HLT sequence classification in general that will carry over to and create high impact on the areas of speech recognition, machine translation and handwritten text recognition. Using our top-ranking research prototype systems, we will verify the validity and effectiveness or our research on public international benchmarks.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.