A holistic approach to bridge the gap between microsecond computer simulations a...
A holistic approach to bridge the gap between microsecond computer simulations and millisecond biological events
Complete understanding of how complex biological objects operate and fulfill their cellular role requires at its core a detailed picture of the millisecond (ms) conformational transitions between functional states. Computational i...
Complete understanding of how complex biological objects operate and fulfill their cellular role requires at its core a detailed picture of the millisecond (ms) conformational transitions between functional states. Computational investigation of such ms–events is thwarted by our difficulty—and often impossibility—to identify and sample efficiently the relevant degrees of freedom at play, as well as the current limitation of all-atom molecular dynamics to the microsecond (μs) timescale on common computer architectures. Guided by concrete biological questions that experiment alone has hitherto proven unable to address, we propose a holistic approach to bridge affordable μs–computer simulations and ms–biological processes without the aid of a special-purpose supercomputer. To meet this grand theoretical challenge, we will associate two powerful developments to make the quantum leap, and open a breadth of applications, scaling up to very large biological objects, so far inaccessible to μs–timescale computer simulations. First, we will determine the reaction coordinate in an unprecedented combination of data- driven discovery of collective variables and advanced algorithms to find the minimum free-energy pathway that connects the end states of the conformational transition. Second, we will accelerate sampling along this pathway by associating ergodic schemes to a novel approach that maps complex free-energy landscapes significantly faster than its competitors. We will apply this methodology to a V1Vo–ATPase, a complete ATP–driven biological motor that converts over the ms–timescale the chemical energy of ATP hydrolysis into mechanical work, with minimalist dissipation. Beyond illuminating the allosteric pathways that underlie the conformational transition, atomic-level description of the rotary-catalysis milestones will shed new light on the effects of pathological mutations altering ATP activity, while helping engineer artificial cells with accelerated ATP turnover.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.