Memory dependent PAth Sampling methods for understanding long TIMEscale molecula...
Memory dependent PAth Sampling methods for understanding long TIMEscale molecular processes
Time matters: timescales determine the fate, behavior and functionality of living matter. Especially the interplay between fast and slow molecular processes is omnipresent in biochemistry (protein folding, enzymatic conversions, m...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto PASTIME
Duración del proyecto: 59 meses
Fecha Inicio: 2023-09-01
Fecha Fin: 2028-08-31
Líder del proyecto
UNIVERSITEIT GENT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Time matters: timescales determine the fate, behavior and functionality of living matter. Especially the interplay between fast and slow molecular processes is omnipresent in biochemistry (protein folding, enzymatic conversions, molecular signaling, etc.). However, in chemistry, models are lacking to properly understand time and its effect on this difficult biological reality.PASTIME will lay the methodological foundations for a correct understanding of time in chemistry by introducing memory dependent transition interface path sampling to chemical modeling. We will tune the memory that is kept in simulations by creating new path ensemble definitions. The problem will be made computationally solvable by cutting molecules' pathways short. Long timescale effects will be studied through pathway statistics. We will achieve higher decorrelation in the sampling by designing new Monte Carlo moves in path space, such as alchemical moves that change the identity of atoms on the fly, and smart use of memory expansion with a replica exchange move. These new time concepts will be challenged and experimentally validated in a context of drug transport kinetics: drug (un)binding to protein binding sites, and permeation of molecules through cell membranes. The modeling principles will be converted to new algorithms that are computationally feasible today and will be shared in open software.With PASTIME we will be able to understand slow time effects in molecular interactions. Appropriate memory reduction and tuning will give us the methods to understand time in an endless range of molecular processes, and this work will contribute to drug design, biochemistry, physiology, catalysis, material and polymer science.