Innovating Works
LCE-06-2017
LCE-06-2017: New knowledge and technologies
Specific Challenge:The technologies that will form the backbone of the energy system by 2030 and 2050 are still under development. Promising technologies for energy conversion are being developed at laboratory scale and need to be scaled up in order to demonstrate their potential value in our future energy system. These new technologies should provide more flexibility to the energy system and could help adapting to changing climatic conditions. New knowledge and more efficient and cost-competitive energy technologies, including their conventional and newly developed supply chains, are required for the long run. It is crucial that these new technologies show evidence of promising developments and do not represent a risk to society.
Sólo fondo perdido 0 €
Europeo
Esta convocatoria está cerrada Esta línea ya está cerrada por lo que no puedes aplicar. Cerró el pasado día 29-11-2016.
Se espera una próxima convocatoria para esta ayuda, aún no está clara la fecha exacta de inicio de convocatoria.
Por suerte, hemos conseguido la lista de proyectos financiados!
Presentación: Consorcio Consorcio: Esta ayuda está diseñada para aplicar a ella en formato consorcio.
Número mínimo de participantes.
Esta ayuda financia Proyectos: Objetivo del proyecto:

Specific Challenge:The technologies that will form the backbone of the energy system by 2030 and 2050 are still under development. Promising technologies for energy conversion are being developed at laboratory scale and need to be scaled up in order to demonstrate their potential value in our future energy system. These new technologies should provide more flexibility to the energy system and could help adapting to changing climatic conditions. New knowledge and more efficient and cost-competitive energy technologies, including their conventional and newly developed supply chains, are required for the long run. It is crucial that these new technologies show evidence of promising developments and do not represent a risk to society.


Scope:One of the following technology-specific challenges has to be addressed:

New renewable energy technologies: Developing the new energy technologies that will form the backbone of the energy system by 2030 and 2050: Excluding wind energy and sustainable fuels addressed in the other bullet points, and photovoltaic new materials addressed in topic NMBP-17-2016 ('Advanced materials solutions and architectures for... ver más

Specific Challenge:The technologies that will form the backbone of the energy system by 2030 and 2050 are still under development. Promising technologies for energy conversion are being developed at laboratory scale and need to be scaled up in order to demonstrate their potential value in our future energy system. These new technologies should provide more flexibility to the energy system and could help adapting to changing climatic conditions. New knowledge and more efficient and cost-competitive energy technologies, including their conventional and newly developed supply chains, are required for the long run. It is crucial that these new technologies show evidence of promising developments and do not represent a risk to society.


Scope:One of the following technology-specific challenges has to be addressed:

New renewable energy technologies: Developing the new energy technologies that will form the backbone of the energy system by 2030 and 2050: Excluding wind energy and sustainable fuels addressed in the other bullet points, and photovoltaic new materials addressed in topic NMBP-17-2016 ('Advanced materials solutions and architectures for high efficiency solar energy harvesting') of the work programme part 'Leadership in enabling and industrial technologies – 5.ii Nanotechnologies, Advanced Materials, Biotechnology and Advanced Manufacturing and Processing', the challenge is to scale up energy technologies currently in development at laboratory scale. It is crucial that these new, more efficient, and cost-competitive energy generation and conversion technologies, demonstrate their potential value in the future European energy system. Developments in sectors other than energy may provide ideas, experiences, technology contributions, knowledge, new approaches, innovative materials and skills that are of relevance to the energy sector. Cross-fertilisation could offer mutually beneficial effects. Wind energy: Improved understanding of the physics of wind as a primary resource and wind energy technology: For an improved design of large-scale wind rotors a better understanding of the underlying physics is needed. The challenge is to increase understanding of the underlying physics and to significantly improve the simulation capability for multi-scale wind flows, loads and materials failure. Significant high-performance computing (HPC) resources will be needed for this challenge. It is expected that further research towards this challenge will continue after the project, therefore the data retrieved in this project should be with open access. Research results could contribute to IEA Wind and for that reason cooperation with IEA partner countries is expected. International cooperation with leading groups outside Europe is encouraged. This research will contribute to making wind energy fully competitive, through a better design of the wind turbine and having an impact on the turbine efficiency and therefore on the cost of energy produced. Sustainable Fuels: Diversification of renewable fuel production through novel conversion routes and novel fuels: Novel technologies for sustainable fuel production and novel fuels having a potential value in our future transport energy system should be developed at laboratory scale. The specific challenge is to diversify the sustainable fuel production taking into account long-term dependencies on fossil fuels of particular transport sectors by developing novel fuels and processes that in the long-term can bring down substantially transport fuel costs while overcoming sustainability constraints and feedstock limitations. While biofuels produced from starch, sugar and oil fractions of food/feed crops are excluded, this research shall enable novel fuel production addressing one of the following pathways: Development of novel microorganisms, enzymes and catalysts or a combination of these systems with improved performance for obtaining paraffinic biofuels or higher alcohols from lignocellulosic biomass; Development of renewable alternative fuels from CO2 in industrial waste flue gases through chemical catalytic conversion; Development of renewable alternative fuels from H2O, CO2 and energy from renewable, autonomous sources through micro-organisms, synthetic molecular systems or chemical synthesis, or a combination of these processes; Development of middle distillate range biofuels (i.e. diesel and jet fuel) from liquid organic or lignocellulosic waste streams through advanced thermochemical conversion processes. Aside from the technology-specific challenges mentioned above, potential environmental, resource efficiency and safety concerns, issues related to social acceptance or resistance to new energy technologies, as well as related socioeconomic and livelihood issues also should be addressed, where relevant. This may require a multi-disciplinary perspective with contributions also from the social sciences and humanities, which then should be integrated into the research process from the outset. A methodology that permits a sustainability assessment of the environmental (notably in terms of GHG performance), as well as economic and social benefits with respect to current technologies should be included.

Novel technology solutions for grid integration, storage, fuel cells and hydrogen – other than integral to the technology solution developed, energy efficiency and smart cities will not be supported under this topic but in the relevant parts of this work program.

The Commission considers that proposals requesting a contribution from the EU of between EUR 2 to 4 million would allow this specific challenge to be addressed appropriately. Nonetheless, this does not preclude submission and selection of proposals requesting other amounts.


Expected Impact:The results of this research are expected to move the technology involved to TRL 4 (please see part G of the General Annexes) and to provide better scientific understanding and guidance enabling the players concerned (e.g. policy makers, regulatory authorities, industry, interest groups representing civil society) to frame strategic choices concerning future energy technologies and to integrate them in the future energy system. It is also expected that new, out-of-the-box or advanced innovative ideas will emerge that will provide new impetus to technology pathways, to new solutions, and to new contributions to the energy challenge in Europe or worldwide.

Where relevant, the new developed technology pathways should improve the economic, environmental and social benefits of renewable energy. Notably, for sustainable fuels they should improve the conversion efficiency that will eventually allow significant cost reduction.


Cross-cutting Priorities:Socio-economic science and humanities


ver menos

Temáticas Obligatorias del proyecto: Temática principal: Renewable heating & cooling Bioenergy Renewable energy sources - general Renewable electricity Energy collection conversion and storage renewab

Características del consorcio

Ámbito Europeo : La ayuda es de ámbito europeo, puede aplicar a esta linea cualquier empresa que forme parte de la Comunidad Europea.
Tipo y tamaño de organizaciones: El diseño de consorcio necesario para la tramitación de esta ayuda necesita de:

Características del Proyecto

Requisitos de diseño: Duración:
Requisitos técnicos: Specific Challenge:The technologies that will form the backbone of the energy system by 2030 and 2050 are still under development. Promising technologies for energy conversion are being developed at laboratory scale and need to be scaled up in order to demonstrate their potential value in our future energy system. These new technologies should provide more flexibility to the energy system and could help adapting to changing climatic conditions. New knowledge and more efficient and cost-competitive energy technologies, including their conventional and newly developed supply chains, are required for the long run. It is crucial that these new technologies show evidence of promising developments and do not represent a risk to society. Specific Challenge:The technologies that will form the backbone of the energy system by 2030 and 2050 are still under development. Promising technologies for energy conversion are being developed at laboratory scale and need to be scaled up in order to demonstrate their potential value in our future energy system. These new technologies should provide more flexibility to the energy system and could help adapting to changing climatic conditions. New knowledge and more efficient and cost-competitive energy technologies, including their conventional and newly developed supply chains, are required for the long run. It is crucial that these new technologies show evidence of promising developments and do not represent a risk to society.
¿Quieres ejemplos? Puedes consultar aquí los últimos proyectos conocidos financiados por esta línea, sus tecnologías, sus presupuestos y sus compañías.
Capítulos financiables: Los capítulos de gastos financiables para esta línea son:
Personnel costs.
Los costes de personal subvencionables cubren las horas de trabajo efectivo de las personas directamente dedicadas a la ejecución de la acción. Los propietarios de pequeñas y medianas empresas que no perciban salario y otras personas físicas que no perciban salario podrán imputar los costes de personal sobre la base de una escala de costes unitarios
Purchase costs.
Los otros costes directos se dividen en los siguientes apartados: Viajes, amortizaciones, equipamiento y otros bienes y servicios. Se financia la amortización de equipos, permitiendo incluir la amortización de equipos adquiridos antes del proyecto si se registra durante su ejecución. En el apartado de otros bienes y servicios se incluyen los diferentes bienes y servicios comprados por los beneficiarios a proveedores externos para poder llevar a cabo sus tareas
Subcontracting costs.
La subcontratación en ayudas europeas no debe tratarse del core de actividades de I+D del proyecto. El contratista debe ser seleccionado por el beneficiario de acuerdo con el principio de mejor relación calidad-precio bajo las condiciones de transparencia e igualdad (en ningún caso consistirá en solicitar menos de 3 ofertas). En el caso de entidades públicas, para la subcontratación se deberán de seguir las leyes que rijan en el país al que pertenezca el contratante
Madurez tecnológica: La tramitación de esta ayuda requiere de un nivel tecnológico mínimo en el proyecto de TRL 5:. Los elementos básicos de la innovación son integrados de manera que la configuración final es similar a su aplicación final, es decir que está listo para ser usado en la simulación de un entorno real. Se mejoran los modelos tanto técnicos como económicos del diseño inicial, se ha identificado adicionalmente aspectos de seguridad, limitaciones ambiéntales y/o regulatorios entre otros. + info.
TRL esperado:

Características de la financiación

Intensidad de la ayuda: Sólo fondo perdido + info
Fondo perdido:
0% 25% 50% 75% 100%
Please read carefully all provisions below before the preparation of your application.
IMPORTANT: Please also read the introductory policy context for the activity RENEWABLE ENERGY TECHNOLOGIES of the COMPETITIVE LOW CARBON ENERGY call under the Societal Challenge 3 'Secure, Clean and Efficient Energy' of the Work Programme 2016 - 2017.
 
List of countries and applicable rules for funding: described in part A of the General Annexes of the General Work Programme.
Note also that a number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon 2020 projects. See the information in the Online Manual.
 
Eligibility and admissibility conditions: described in part B and C of the General Annexes of the General Work Programme.
Proposal page limits and layout: Please refer to Part B of the standard proposal template.
 
Evaluation
3.1  Evaluation criteria and procedure, scoring and threshold: described in part H of the General Annexes of the General Work Programme.
3.2 Submission and evaluation process: Guide to the submission and evaluation process.
      
Indicative timetable for evaluation and grant agreement:
Information on the outcome of the evaluation: Maximum 4 months from the final date for submission...
Please read carefully all provisions below before the preparation of your application.
IMPORTANT: Please also read the introductory policy context for the activity RENEWABLE ENERGY TECHNOLOGIES of the COMPETITIVE LOW CARBON ENERGY call under the Societal Challenge 3 'Secure, Clean and Efficient Energy' of the Work Programme 2016 - 2017.
 
List of countries and applicable rules for funding: described in part A of the General Annexes of the General Work Programme.
Note also that a number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon 2020 projects. See the information in the Online Manual.
 
Eligibility and admissibility conditions: described in part B and C of the General Annexes of the General Work Programme.
Proposal page limits and layout: Please refer to Part B of the standard proposal template.
 
Evaluation
3.1  Evaluation criteria and procedure, scoring and threshold: described in part H of the General Annexes of the General Work Programme.
3.2 Submission and evaluation process: Guide to the submission and evaluation process.
      
Indicative timetable for evaluation and grant agreement:
Information on the outcome of the evaluation: Maximum 4 months from the final date for submission for the first stage and maximum 5 months from the final date for submission for the second stage; and
Indicative date for the signing of grant agreements: Maximum 8 months from the final date for submission of the second stage.
 
Provisions, proposal templates and evaluation forms for the type(s) of action(s) under this topic:
Research and Innovation Action:
Specific provisions and funding rates
Proposal templates are available after entering the submission tool below
Standard evaluation form
H2020 General MGA -Multi-Beneficiary
Annotated Grant Agreement
 
Additional provisions:
Horizon 2020 budget flexibility
Classified information
Technology readiness levels (TRL) – where a topic description refers to TRL, these definitions apply.
Financial support to Third Parties – where a topic description foresees financial support to Third Parties, these provisions apply.
 
Open access must be granted to all scientific publications resulting from Horizon 2020 actions.
Where relevant, proposals should also provide information on how the participants will manage the research data generated and/or collected during the project, such as details on what types of data the project will generate, whether and how this data will be exploited or made accessible for verification and re-use, and how it will be curated and preserved.
Open access to research data
The Open Research Data Pilot has been extended to cover all Horizon 2020 topics for which the submission is opened on 26 July 2016 or later. Projects funded under this topic will therefore by default provide open access to the research data they generate, except if they decide to opt-out under the conditions described in annex L of the Work Programme. Projects can opt-out at any stage, that is both before and after the grant signature.
Note that the evaluation phase proposals will not be evaluated more favourably because they plan to open or share their data, and will not be penalised for opting out.
Open research data sharing applies to the data needed to validate the results presented in scientific publications. Additionally, projects can choose to make other data available open access and need to describe their approach in a Data Management Plan.
- Projects need to create a Data Management Plan (DMP), except if they opt-out of making their research data open access. A first version of the DMP must be provided as an early deliverable within six months of the project and should be updated during the project as appropriate. The Commission already provides guidance documents, including a template for DMPs.
- Eligibility of costs: costs related to data management and data sharing are eligible for reimbursement during the project duration.
The legal requirements for projects participating in this pilot are in the article 29.3 of the Model Grant Agreement.
 
Additional documents
H2020 Work Programme 2016-17: Introduction
H2020 Work Programme 2016-17: Secure, clean and efficient energy
H2020 Work Programme 2016-17: Dissemination, Exploitation and Evaluation
H2020 Work Programme 2016-17: General Annexes
Legal basis: Horizon 2020 - Regulation of Establishment 
Legal basis: Horizon 2020 Rules for Participation
Legal basis: Horizon 2020 Specific Programme
 
Garantías:
No exige Garantías
No existen condiciones financieras para el beneficiario.

Información adicional de la convocatoria

Efecto incentivador: Esta ayuda tiene efecto incentivador, por lo que el proyecto no puede haberse iniciado antes de la presentación de la solicitud de ayuda. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
No Competitiva Competitiva Muy Competitiva
No conocemos el presupuesto total de la línea
Minimis: Esta línea de financiación NO considera una “ayuda de minimis”. Puedes consultar la normativa aquí.

Otras ventajas

Sello PYME: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.
H2020-LCE-2016-2017 New knowledge and technologies Specific Challenge:The technologies that will form the backbone of the energy system by 2030 and 2050 are still under development. Promising...
Sin info.
LCE-03-2014 Demonstration of renewable electricity and heating/cooling technologies
en consorcio:
Cerrada hace 3 años | Próxima convocatoria prevista para el mes de
LCE-Prize-CO2Reuse-01-2016 Horizon prize for CO2 reuse
en consorcio: Specific Challenge:Preventing dangerous climate change is a key priority for the European Union. Europe is working hard to cut its greenhous...
Cerrada hace 6 años | Próxima convocatoria prevista para el mes de
LCE-Prize-RenewableHospital-01-2016 Horizon prize for a Combined Heat and Power (CHP) Installation in a hospital using 100% Renewable Energy Sources
en consorcio: Specific Challenge:The integration and use of renewable energy in buildings for heat and power generation still encounter unsolved technolog...
Cerrada hace 6 años | Próxima convocatoria prevista para el mes de
LCE-Prize-PhotovoltaicsHistory-01-2016 Horizon prize for Integrated Photovoltaic System in European Protected Historic Urban districts
en consorcio: Specific Challenge:In Europe, architectural and planning rules for protected historic buildings lead to major technical constrains in integr...
Cerrada hace 6 años | Próxima convocatoria prevista para el mes de
LCE-20-2016-2017 Enabling pre-commercial production of advanced aviation biofuel
en consorcio:
Cerrada hace 7 años | Próxima convocatoria prevista para el mes de