Innovating Works
HORIZON-CL4-2023-TWIN-TRANSITION-01-45
Circular economy solutions for the valorisation of low-quality sc...
ExpectedOutcome:Projects are expected to contribute to one or more of the following outcomes:
Sólo fondo perdido 0 €
European
This call is closed This line is already closed so you can't apply. It closed last day 20-04-2023.
An upcoming call for this aid is expected, the exact start date of call is not yet clear.
Luckily, we have achieved the list of financed projects!
Presentation: Consortium Consortium: Esta ayuda está diseñada para aplicar a ella en formato consorcio.
Minimum number of participants.
This aid finances Proyectos:

ExpectedOutcome:Projects are expected to contribute to one or more of the following outcomes:

Implementation of highly efficient technologies for recovering metal (iron and non-ferrous metals) and mineral fractions from in-plant steelmaking residues. The recovery technology should condition the composition and properties of the residue such as, but not limited to, slag, sludge, scale, filter dust, sinter waste produced by blast furnace / basic oxygen furnace (BF / BOF) and electric arc furnace (EAF) routes, but also by next-generation iron and steelmaking such as, but not limited to, the direct reduction / electric arc furnace (DR / EAF) pathway including the melting and reduction of low-grade iron ore. Two possible ways are envisioned: the first one is based on cooling and mechanical steps, such as, but not limited to, wet or dry granulation followed by phase separation; the second one relies on dedicated processes to enable a direct recycling of residues in existing production processes or in standalone pyro-metallurgic melting and reduction or hydrometallurgical / biohydrometallurgical units. Such knowledge and results should support the valorisation of residues in... see more

ExpectedOutcome:Projects are expected to contribute to one or more of the following outcomes:

Implementation of highly efficient technologies for recovering metal (iron and non-ferrous metals) and mineral fractions from in-plant steelmaking residues. The recovery technology should condition the composition and properties of the residue such as, but not limited to, slag, sludge, scale, filter dust, sinter waste produced by blast furnace / basic oxygen furnace (BF / BOF) and electric arc furnace (EAF) routes, but also by next-generation iron and steelmaking such as, but not limited to, the direct reduction / electric arc furnace (DR / EAF) pathway including the melting and reduction of low-grade iron ore. Two possible ways are envisioned: the first one is based on cooling and mechanical steps, such as, but not limited to, wet or dry granulation followed by phase separation; the second one relies on dedicated processes to enable a direct recycling of residues in existing production processes or in standalone pyro-metallurgic melting and reduction or hydrometallurgical / biohydrometallurgical units. Such knowledge and results should support the valorisation of residues in the present value chain and/or in innovative applications. If appropriate, residues could be chemically and structurally characterised at micro-scale level via characterisation (also multi-modal) performed at analytical research infrastructures, which would allow obtaining relevant statistical information;Describe and/or modify the composition and properties of residues such as, but not limited to, slags and/or sludge produced by next-generation steelmaking such as, but not limited to the DR / EAF pathway. Such knowledge and results should support the valorisation of the residues in the present value chain and/or in innovative applications. If appropriate, residues could be chemically and structurally characterised at micro-scale level via characterisation (also multi-modal) performed at analytical research infrastructures, which would allow obtaining relevant statistical information;Enhanced utilisation of low-quality scrap by new technologies and by new iron/steel making routes (such as smart BF-BOF routes to be line with decarbonisation targets), targeting high quality of the finished product and reduced CO2 emissions. The aim is to remove scrap impurities (tramp elements) such as, but not limited to, copper before melting, for example through scrap yard management and charge preparation for quality upgrading, or after the melting in liquid phase, through, but not limited to, metallurgical methods;Technologies to broaden the types of ore grades utilized in different processes. The aim is to establish processes that allow for upgrade of low-grade iron ores and other iron-bearing materials to make them suitable for, but not limited to, cold bonded agglomeration, pelletisation, or direct use in existing steelworks.
Scope:In the medium-term scenario, new technologies will enter in the iron and steelmaking production process, e.g., higher amount of scrap in basic oxygen furnaces (BOF), more electric arc furnace (EAF) based steelmaking, as well as more directly reduced production capacity are foreseen. Therefore, it is necessary to consider the influence of the feedstock quality, of the new production technologies and of the composition of the by-products generated on the present model of circular economy for both, economic, and environmental aspects.

Recycling of steel scrap (no matter if it is home-scrap, industrial scrap, or post-consumer scrap), the increased consumption of scrap, the recovery of iron from residues and the use of low-quality iron ore materials are vital to diminish the need for additional primary resource extraction and hence to decrease the environmental impact of steel manufacturing. This is also contributing to a wise and sustainable management approach of iron resources. Applying circular economic principles to product design (thus, designing for remanufacture and recycling) will allow ferrous and non-ferrous metals, such as copper, to be more easily separated and recycled.

Proposals should consider higher utilisation of low-quality iron-bearing materials, in particular, but not limited to, low-quality scrap with higher amounts of unwanted elements (residual and alloying elements, such as Cu, Sn, Sb, As and Bi, but also Cr, Mo, B) that prevent the production of many steel grades and a higher utilisation of internal residues; all focused on the recycling of its metal contents. Where appropriate for the study proposed, analytical research infrastructures, such as synchrotron facilities, should be considered as capable of providing large amount of statistically relevant data. The aim is to obtain a sustainable vision of reduced virgin raw materials use.

Moreover, the existing recycling and reuse solutions for today’s steel industry will be affected and new solutions need to be developed to maintain a sustainable development of the steel industry in the future. Projects should aim at the selection and integration of best available and applicable technologies supported by digital smart tools. These are key elements to improve and adapt circular economy solutions for the long-term goal towards zero waste increasing the use of scrap, the materials recycling rate and the residue valorisation by targeting to achieve the same quality of the finished product and at the same time reducing CO2 emissions due to lower energy need with respect to iron-ore.

Multidisciplinary research activities should address one or more of the following:

New technologies for reduce / reuse / recycle of residues and by-products in the next generation iron ore and steelmaking process: Increasing reuse and recycling of steelmaking and foundry slags;Recycling and valorisation of dusts, and sludges;Recovering iron and metal-fractions from in-plant residues;Conditioning processes for the use of residues and low-quality iron ore grades, like agglomeration or pelletisation;Implementing Circular Economy and Industrial Symbiosis for long-term goal towards zero- waste. Sustainable and efficient scrap management and recycling aiming high-grade steel production with increased scrap rates including: Improved mechanical scrap preparation coupled with scrap analyses at various levels;Continuous analysis and monitoring of the scrap bulk composition using sensor systems with accompanied model-supported Big Data analytics and Artificial Intelligence (AI) techniques for scrap classification;Scrap yard management and charge preparation for quality upgrading;Optimised and more flexible primary and secondary steelmaking processes considering enhanced scrap rates. This topic implements the co-programmed European Partnership on Clean Steel.


Specific Topic Conditions:Activities are expected to start at TRL 4 and achieve TRL 5-6 by the end of the project – see General Annex B.




see less

Temáticas Obligatorias del proyecto: Temática principal: Chemical engineering Other engineering and technologies Energy Efficiency Co-programmed European Partnerships

Consortium characteristics

Scope European : The aid is European, you can apply to this line any company that is part of the European Community.
Tipo y tamaño de organizaciones: The necessary consortium design for the processing of this aid needs:

characteristics of the Proyecto

Requisitos de diseño por participante: *Presupuesto para cada participante en el proyecto
Requisitos técnicos: ExpectedOutcome:Projects are expected to contribute to one or more of the following outcomes: ExpectedOutcome:Projects are expected to contribute to one or more of the following outcomes:
Do you want examples? Puedes consultar aquí los últimos proyectos conocidos financiados por esta línea, sus tecnologías, sus presupuestos y sus compañías.
Financial Chapters: The chapters of financing expenses for this line are:
Personnel costs.
Expenses related to personnel working directly on the project are based on actual hours spent, based on company costs, and fixed ratios for certain employees, such as the company's owners.
Subcontracting costs.
Payments to external third parties to perform specific tasks that cannot be performed by the project beneficiaries.
Purchase costs.
They include the acquisition of equipment, amortization, material, licenses or other goods and services necessary for the execution of the project
Other cost categories.
Miscellaneous expenses such as financial costs, audit certificates or participation in events not covered by other categories
Indirect costs.
Overhead costs not directly assignable to the project (such as electricity, rent, or office space), calculated as a fixed 25% of eligible direct costs (excluding subcontracting).
Madurez tecnológica: The processing of this aid requires a minimum technological level in the project of TRL 4:. Los componentes que integran determinado proyecto de innovación han sido identificados y se busca establecer si dichos componentes individuales cuentan con las capacidades para actuar de manera integrada, funcionando conjuntamente en un sistema. + info.
TRL esperado:

Characteristics of financing

Intensidad de la ayuda: Sólo fondo perdido + info
Lost Fund:
For the eligible budget, the intensity of the aid in the form of a lost fund may reach as minimum a 100%.
The funding rate for RIA projects is 100 % of the eligible costs for all types of organizations. The funding rate for RIA projects is 100 % of the eligible costs for all types of organizations.
Guarantees:
does not require guarantees
No existen condiciones financieras para el beneficiario.

Additional information about the call

incentive effect: Esta ayuda no tiene efecto incentivador. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
non -competitive competitive Very competitive
We do not know the total budget of the line
Financial Projects In this call.
minimis: Esta línea de financiación NO considera una “ayuda de minimis”. You can consult the regulations here.

other advantages

SME seal: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.
HORIZON-CL4-2023-TWIN-TRANSITION-01 Circular economy solutions for the valorisation of low-quality scrap streams, materials recirculation with high recycling rate, and residue valorisation for long term goal towards zero waste ExpectedOutcome:Projects are expected to contribute to one or more of the following outcomes: Implementation of highly efficient technologi...
Sin info.
HORIZON-CL4-2023-TWIN-TRANSITION-01-45 Circular economy solutions for the valorisation of low-quality scrap streams, materials recirculation with high recycling rate, and residue valorisation for long term goal towards zero waste
en consorcio: ExpectedOutcome:Projects are expected to contribute to one or more of the following outcomes: Implementation of highly efficient technologi...
Cerrada does 2 years | next call scheduled for the month of
HORIZON-CL4-2023-TWIN-TRANSITION-01-37 Hubs for circularity for near zero emissions regions applying industrial symbiosis and cooperative approach to heavy industrialized clusters and surrounding ecosystems (Processes4Planet partn
en consorcio: ExpectedOutcome:Projects outcomes will enable achievement of the objectives of Processes4Planet partnership by demonstrating hubs for circul...
Cerrada does 2 years | next call scheduled for the month of
HORIZON-CL4-2023-TWIN-TRANSITION-01-43 Low carbon-dioxide emission technologies for melting iron-bearing feed materials OR smart carbon usage and improved energy & resource efficiency via process integration (Clean Steel Partnersh
en consorcio: ExpectedOutcome:Projects outcomes will enable achieving the objectives of the Clean Steel Partnership (CSP) by contributing to one of the fo...
Cerrada does 2 years | next call scheduled for the month of
HORIZON-CL4-2023-TWIN-TRANSITION-01-08 Foresight and technology transfer for Manufacturing as a Service (Made in Europe Partnership) (CSA)
en consorcio: ExpectedOutcome:Projects are expected to contribute to the following outcomes: Focused strategic foresight relevant to Manufacturing as a S...
Cerrada does 2 years | next call scheduled for the month of
HORIZON-CL4-2023-TWIN-TRANSITION-01-40 Sustainable and efficient industrial water consumption: through energy and solute recovery (Processes4Planet partnership) (RIA)
en consorcio: ExpectedOutcome:Projects outcomes will enable achieving the objectives of Processes4Planet partnership by designing industrial processes for...
Cerrada | next call scheduled for the month of