Innovating Works
HORIZON-CL4-2022-HUMAN-02...
HORIZON-CL4-2022-HUMAN-02-01: AI for human empowerment (AI, Data and Robotics Partnership) (RIA)
Sólo fondo perdido 0 €
Comunidad autónoma
Esta convocatoria está cerrada Esta línea ya está cerrada por lo que no puedes aplicar. Cerró el pasado día 16-11-2022.
Se espera una próxima convocatoria para esta ayuda, aún no está clara la fecha exacta de inicio de convocatoria.
Por suerte, hemos conseguido la lista de proyectos financiados!
Presentación: Consorcio Consorcio: Esta ayuda está diseñada para aplicar a ella en formato consorcio..
Esta ayuda financia Proyectos:

ExpectedOutcome:Proposal results are expected to contribute to at least one of the following expected outcomes:

Truly mixed human-AI initiatives for human empowermentTrustworthy hybrid decision-support systems
Scope:Build the next level of perception, visualisation, interaction and collaboration between humans and AI systems working together as partners to achieve common goals, sharing mutual understanding and learning of each other’s abilities and respective roles.

Innovative and promising approaches are encouraged, including human-in the loop approaches for truly mixed human-AI initiatives combining the best of human and machine knowledge and capabilities, tacit knowledge extraction (to design the next generation AI-driven co-creation and collaboration tools embodied e.g. in industrial/working spaces environments).

Each proposal will exclusively focus on one of the two following research objectives, and must clearly identify its focus in the proposal:

Reach truly mixed human-AI initiatives for human empowerment. The approaches should combine the best of human and machine knowledge and capabilities including shared and... ver más

ExpectedOutcome:Proposal results are expected to contribute to at least one of the following expected outcomes:

Truly mixed human-AI initiatives for human empowermentTrustworthy hybrid decision-support systems
Scope:Build the next level of perception, visualisation, interaction and collaboration between humans and AI systems working together as partners to achieve common goals, sharing mutual understanding and learning of each other’s abilities and respective roles.

Innovative and promising approaches are encouraged, including human-in the loop approaches for truly mixed human-AI initiatives combining the best of human and machine knowledge and capabilities, tacit knowledge extraction (to design the next generation AI-driven co-creation and collaboration tools embodied e.g. in industrial/working spaces environments).

Each proposal will exclusively focus on one of the two following research objectives, and must clearly identify its focus in the proposal:

Reach truly mixed human-AI initiatives for human empowerment. The approaches should combine the best of human and machine knowledge and capabilities including shared and sliding autonomy in interaction, addressing reactivity, and fluidity of interaction and making systems transparent, fair and intuitive to use, which will play a key role in acceptance. The systems should adapt to the user rather than the opposite, based on analysis, understanding and anticipation about human behaviour and expectations.Trustworthy hybrid decision-support, including approaches for mixed and sliding decision-making, for context interpretation, for dealing with uncertainty, transparent anticipation, reliability, human-centric planning and decision-making, interdependencies, and augmented decision-making. Transparency, fairness, technical accuracy and robustness will be the key, together with validation strategies assessing also the quality of the decision of the AI supported socio-technical system. All proposals should adopt a human-centred development of trustworthy AI and investigate and optimise ways of human-AI interaction, key for acceptance and democratisation of AI, to allow any user to take full advantage of the huge benefits such technology can offer, regardless of their age, race, gender or capabilities. This includes development of methods to improve transparency, in particular for human users, in terms of explainability, expected levels of performance which are guaranteed/verifiable and corresponding confidence levels, accountability and responsibility, as well as perceived trust and fairness. AI could also be used to empower humans in supporting them to improve responsible behaviours, where appropriate, but this should be done in full respect of the requirements ensuring trustworthy AI, including human autonomy.

Innovative scientific approach towards human-centric approaches will require multidisciplinary and trans-disciplinary approaches paying particular attention to intersectional factors (gender, ethnicity, age, socioeconomic status, disability) including SSH[1] and other disciplines relevant to stimulate novel research avenues, and eventually improve user-acceptance. Collaborative design and evaluation with users involvement should also be considered.

As a pilot activity, proposals in this topic will dedicate part of their activities on investigating novel ways of engagement by citizens or citizen representatives with AI development, with a view of optimising experience towards improving usability and experience for citizens (both at professional or daily life environment).

All proposals should contribute to build the next level of perception, visualisation, interaction and collaboration, and understanding between humans and AI systems working together as partners to achieve common goals, sharing mutual understanding of each other’s abilities and respective roles.

All proposals are expected to embed mechanisms to assess and demonstrate progress (with qualitative and quantitative KPIs, benchmarking and progress monitoring, as well as illustrative application use-cases demonstrating concrete potential added value), and share results with the European R&D community, through the AI-on-demand platform[2], a public community resource, to maximise re-use of results, either by developers, or for uptake, and optimise efficiency of funding. Activities are expected to achieve TRL 4-5 by the end of the project.

This topic implements the co-programmed European Partnership on AI, Data and Robotics.

All proposals are expected to allocate tasks to cohesion activities with the PPP on AI, Data and Robotics and funded actions related to this partnership, including the CSA HORIZON-CL4-2021-HUMAN-01-02.


Specific Topic Conditions:Activities are expected to start at TRL 2-3 and achieve TRL 4-5 by the end of the project – see General Annex B.




Cross-cutting Priorities:Artificial IntelligenceCo-programmed European PartnershipsSocial sciences and humanitiesDigital Agenda


<p id=fn1>[1]Social Sciences and Humanities

<p id=fn2>[2]Initiated under the AI4EU project https://cordis.europa.eu/project/id/825619 and further developed in projects resulting from H2020-ICT-49-2020 call

ver menos

Temáticas Obligatorias del proyecto: Temática principal:

Características del consorcio

Ámbito Comunidad autónoma :
Solo pueden aplicar a esta linea las empresas con sede en:
Tipo y tamaño de organizaciones: El diseño de consorcio necesario para la tramitación de esta ayuda necesita de:

Características del Proyecto

Requisitos de diseño: Duración: ¿Quieres ejemplos? Puedes consultar aquí los últimos proyectos conocidos financiados por esta línea, sus tecnologías, sus presupuestos y sus compañías.
Capítulos financiables: Los capítulos de gastos financiables para esta línea son:
Personnel costs.
Subcontracting costs.
Purchase costs.
Other cost categories.
Indirect costs.
Madurez tecnológica: La tramitación de esta ayuda requiere de un nivel tecnológico mínimo en el proyecto de TRL 4:. Es el primer paso para determinar si los componentes individuales funcionarán juntos como un sistema en un entorno de laboratorio. Es un sistema de baja fidelidad para demostrar la funcionalidad básica y se definen las predicciones de rendimiento asociadas en relación con el entorno operativo final. + info.
TRL esperado:

Características de la financiación

Intensidad de la ayuda: Sólo fondo perdido + info
Fondo perdido:
0% 25% 50% 75% 100%
Para el presupuesto subvencionable la intensidad de la ayuda en formato fondo perdido podrá alcanzar como minimo un 100%.
The funding rate for RIA projects is 100 % of the eligible costs for all types of organizations. The funding rate for RIA projects is 100 % of the eligible costs for all types of organizations.
Garantías:
No exige Garantías
No existen condiciones financieras para el beneficiario.

Información adicional de la convocatoria

Efecto incentivador: Esta ayuda no tiene efecto incentivador. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
No Competitiva Competitiva Muy Competitiva
No conocemos el presupuesto total de la línea
Minimis: Esta línea de financiación NO considera una “ayuda de minimis”. Puedes consultar la normativa aquí.

Otras ventajas

Sello PYME: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.