Innovating Works

H2020

Cerrada
HORIZON-JU-SNS-2024-STREA...
HORIZON-JU-SNS-2024-STREAM-B-01-08: Reliable AI for 6G Communications Systems and Services
ExpectedOutcome:The key expected outcomes include:
Sólo fondo perdido 6M €
Europeo
Esta convocatoria está cerrada Esta línea ya está cerrada por lo que no puedes aplicar. Cerró el pasado día 18-04-2024.
Se espera una próxima convocatoria para esta ayuda, aún no está clara la fecha exacta de inicio de convocatoria.
Hace 8 mes(es) del cierre de la convocatoria y aún no tenemos información sobre los proyectos financiados, puede que esta información se publique pronto.
Presentación: Consorcio Consorcio: Esta ayuda está diseñada para aplicar a ella en formato consorcio..
Esta ayuda financia Proyectos:

ExpectedOutcome:The key expected outcomes include:

Realistic applicability of AI at large scale in 6G networks for natively supporting AI architectures, common data sets and/or federated learning methodologies and assessment models, including re-training of models with the introduction/update of the data sets; AI/ML solutions that will have impactful contribution to standardisation activities; Interpretability solution exploring standard-compliance testing & debugging techniques.Development of curated data sets of realistic 6G scenarios (using new real and/or synthetic data sets) for reference usage in telecommunication research and standardisation, targeting their wide acceptance and future usage for benchmarking by future EU R&I activities.Analysis, aggregation and harmonisation of results from existing projects and creation of an overall framework for benchmarking and calibration, end-to-end testing and evaluation of AI solutions for 6G networks.Metrics and models to assess the pros and cons of AI technologies in telecommunications, including aspects as energy efficiency, explainability, reliability, safety and security, non-discrimination, privacy a... ver más

ExpectedOutcome:The key expected outcomes include:

Realistic applicability of AI at large scale in 6G networks for natively supporting AI architectures, common data sets and/or federated learning methodologies and assessment models, including re-training of models with the introduction/update of the data sets; AI/ML solutions that will have impactful contribution to standardisation activities; Interpretability solution exploring standard-compliance testing & debugging techniques.Development of curated data sets of realistic 6G scenarios (using new real and/or synthetic data sets) for reference usage in telecommunication research and standardisation, targeting their wide acceptance and future usage for benchmarking by future EU R&I activities.Analysis, aggregation and harmonisation of results from existing projects and creation of an overall framework for benchmarking and calibration, end-to-end testing and evaluation of AI solutions for 6G networks.Metrics and models to assess the pros and cons of AI technologies in telecommunications, including aspects as energy efficiency, explainability, reliability, safety and security, non-discrimination, privacy and performance as well as usability & accessibility for users. Specific focus should be on energy-efficiency and computational complexity that are still open issues for real-time hardware.Recommendations for policy and regulatory guidelines on the development and usage of AI solutions for network optimisations and provision of AI as a service.Development of a trustworthy AI framework which should be addressed in each stage of the AI system building (from data to model development etc.).Focus should be on implementation and connected to current standardization efforts and state-of-the-art Open Source frameworks and tooling.
Objective:Please refer to the "Specific Challenges and Objectives" section for Stream B in the Work Programme, available under ‘Topic Conditions and Documents - Additional Documents’.


Scope:The focus of this Strand is on several complementary issues and applicants may select several or all the below-mentioned issues. The main goal of this project is to fill the gaps and work on the end-to-end system integration of SNS AI/ML solutions, or national level developed AI/ML solutions and not to focus on dedicated AI/ML problems of specific network domains. The targeted project scope includes:

Development of a reference framework for end-to-end AI usage for the telecommunications domain in relation to 6G, including methodologies for centralized, distributed and federated applications, reference use cases, data acquisition and generation, repositories, curated training and evaluation data, as well as the technologies and functionalities needed to use it as a benchmarking platform for future AI/ML solutions for 6G networks. The framework should be expandable so that future R&I actions can follow its directives and easily provide new use cases and data sets. Towards this end, the reference framework shall be hardware-agnostic, so that it can support heterogeneous hardware implementations.Development of appropriate data infrastructure and functionalities that will enable novel AI-based services as well as AI as a Service to vertical industries.Models for AI costs and benefits in telecommunications applications. Typical 6G metrics should be able to be evaluated, including but not limited to data rate, latency, density, energy efficiency, flexibility and performance, and/or security and privacy, but other value metrics can be considered as well.Solutions that will guarantee reliable use of the technology and build trust in 6G and services enabled by 6G. Associated topics include: i) AI environment (training, development, production) evaluation; ii) assessment models of reliable AI costs and performance value; iii) conflict resolution among local and global AI models, iv) Vulnerability assessment of AI models for different telecommunication applications potentially using friendly hacking means and v) Reliable and trustable AI life cycle, including the AI development and deployment environments.The framework should address a wide range of open issues indicatively and not limited to, e2e AI/ML conflict resolution, placement of AI at appropriate places inside the network (e.g., edge), provide energy friendly AI/ML solutions, how to handle vast amount of data for AI/ML purposes using computing/storage and network resources in a scalable way, and any other advances needed to support the overall goal. In addition, the AI/ML should be able to work across different/multiple network infrastructures, tools, apps, and data/communication needs.Where relevant, harmonisation/coordination with Member States or Associated countries 6G initiatives, as well as with the existing SNS EU-US cooperation initiative (HORIZON-JU-SNS-2023-STREAM-B-01-06: EU-US 6G R&I Cooperation). Any produced PoCs should be implemented in a way that their integration in future SNS WP2025-26 Stream C and/or Stream D project will be possible (e.g., open-source solutions, appropriate documentation, support after the completion of the project etc.).Production of data sets should cover as many areas as possible from the actual operation of 6G networks (user mobility patterns, RAN/Transport/Core data traffic patterns, network failures or security attacks, computing usage patterns etc.) including real and synthetic data, or even appropriately adapted data from open free data sets.Production of data sets and validation methodologies, contributing to 6G Human Centricity and Societal acceptance and in compliance with the rules of data legislation. Development of guidelines, for ethical considerations, and suggestions to regulatory frameworks are also desirable. Methods of accreditation of usage/compliance may also be considered to validate techniques of dataset production and dataset conformance.Development of solutions that will address the need for robust and trustworthy AI/ML validating the “quality” datasets from different scenarios, which influences the outcomes of the AI systems, as well as the corresponding outcome of AI.Verification and validation of AI techniques over experimental platforms, additionally providing the associated datasets. Applicants are expected to provide details on the type and availability of the datasets to be produced and curated by the project. This includes, but is not limited to, whether they will be based on existing or new datasets, project partner(s) in charge of producing them, whether they will be based on real-world measurements or synthetic ones, etc; as well as their complementarity, availability of datasets beyond consortium partners.


ver menos

Temáticas Obligatorias del proyecto: Temática principal: ExpectedOutcome:The key expected outcomes include:
Telecommunications

Características del consorcio

Ámbito Europeo : La ayuda es de ámbito europeo, puede aplicar a esta linea cualquier empresa que forme parte de la Comunidad Europea.
Tipo y tamaño de organizaciones: El diseño de consorcio necesario para la tramitación de esta ayuda necesita de:

Características del Proyecto

Requisitos de diseño: *Presupuesto para cada participante en el proyecto
Requisitos técnicos: ExpectedOutcome:The key expected outcomes include: ExpectedOutcome:The key expected outcomes include:
Capítulos financiables: Los capítulos de gastos financiables para esta línea son:
Personnel costs.
Subcontracting costs.
Purchase costs.
Other cost categories.
Indirect costs.
Madurez tecnológica: La tramitación de esta ayuda requiere de un nivel tecnológico mínimo en el proyecto de TRL 4:. Es el primer paso para determinar si los componentes individuales funcionarán juntos como un sistema en un entorno de laboratorio. Es un sistema de baja fidelidad para demostrar la funcionalidad básica y se definen las predicciones de rendimiento asociadas en relación con el entorno operativo final. + info.
TRL esperado:

Características de la financiación

Intensidad de la ayuda: Sólo fondo perdido + info
Fondo perdido:
Para el presupuesto subvencionable la intensidad de la ayuda en formato fondo perdido podrá alcanzar como minimo un 100%.
The funding rate for RIA projects is 100 % of the eligible costs for all types of organizations. The funding rate for RIA projects is 100 % of the eligible costs for all types of organizations.
Garantías:
No exige Garantías
No existen condiciones financieras para el beneficiario.

Información adicional de la convocatoria

Efecto incentivador: Esta ayuda no tiene efecto incentivador. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
No Competitiva Competitiva Muy Competitiva
El presupuesto total de la convocatoria asciende a
Presupuesto total de la convocatoria.
Proyectos financiables en esta convocatoria.
Minimis: Esta línea de financiación NO considera una “ayuda de minimis”. Puedes consultar la normativa aquí.
Certificado DNSH: Los proyectos presentados a esta línea deben de certificarse para demostrar que no causan perjuicio al medio ambiente. + info

Otras ventajas

Sello PYME: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.
Deducción I+D+i:
0% 25% 50% 75% 100%
La empresa puede aplicar deducciones fiscales en I+D+i de los gastos del proyecto y reducir su impuesto de sociedades. + info
HORIZON-JU-SNS-2024 Reliable AI for 6G Communications Systems and Services ExpectedOutcome:The key expected outcomes include: Realistic applicability of AI at large scale in 6G networks for natively supporting AI a...
Sin info.
HORIZON-JU-SNS-2024-STREAM-B-01-06 International Collaboration – EU-ROK
en consorcio: ExpectedOutcome:This SNS International Cooperation activity targets the Republic of Korea (ROK). It builds on the interactions developed bet...
Cerrada hace 8 meses | Próxima convocatoria prevista para el mes de
HORIZON-JU-SNS-2024-STREAM-B-01-05 International Collaboration – EU-JP
en consorcio: ExpectedOutcome:EU-Japan research collaboration for the evolution of Radio Access Networks (RAN), evolving following 6G standardization orie...
Cerrada hace 8 meses | Próxima convocatoria prevista para el mes de
HORIZON-JU-SNS-2024-STREAM-B-01-03 Communication Infrastructure Technologies and Devices – Standardisation and Follow-up/PoCs
en consorcio: ExpectedOutcome:The target outcomes address: Advanced solutions and technologies for optical, terrestrial and non-terrestrial networks incl...
Cerrada hace 8 meses | Próxima convocatoria prevista para el mes de
HORIZON-JU-SNS-2024-STREAM-B-01-02 Wireless Communication Technologies and Signal Processing – Standardisation and Follow-up/PoCs
en consorcio: ExpectedOutcome:The target outcomes address: Methods for an efficient effective, affordable, and accessible use of frequency spectrum for j...
Cerrada hace 8 meses | Próxima convocatoria prevista para el mes de
HORIZON-JU-SNS-2024-STREAM-B-01-04 Reliable Services and Smart Security–Standardisation and Follow-up/PoCs
en consorcio: ExpectedOutcome:The target outcomes address consolidation of results on: AI technology applied to security and service deployment in differ...
Cerrada hace 8 meses | Próxima convocatoria prevista para el mes de
HORIZON-JU-SNS-2024-STREAM-B-01-08 Reliable AI for 6G Communications Systems and Services
en consorcio: ExpectedOutcome:The key expected outcomes include: Realistic applicability of AI at large scale in 6G networks for natively supporting AI a...
Cerrada hace 8 meses | Próxima convocatoria prevista para el mes de
HORIZON-JU-SNS-2024-STREAM-B-01-01 System Architecture - Standardisation and Follow-up/PoCs
en consorcio: ExpectedOutcome:The target outcomes address consolidation of results in the field of: Architectures providing built-in capabilities/mechani...
Cerrada hace 8 meses | Próxima convocatoria prevista para el mes de
HORIZON-JU-SNS-2024-STREAM-B-01-07 Sustainability Lighthouse
en consorcio: ExpectedOutcome:The Lighthouse project expected outcomes on both “Sustainable 6G” and “6G for sustainability” dimensions include: Technolog...
Cerrada hace 8 meses | Próxima convocatoria prevista para el mes de