For over a century, ultra-high energy cosmic rays (CR) have been observed by scientists, but their energy and place of production remain a mystery. At very high energies, neutrinos generated by CR carry messages from, e.g., the ve...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
NEUTRINOSICDC
Full sky neutrino astronomy with the Deep Core of IceCube
173K€
Cerrado
RadNu
Radio detection of the PeV EeV cosmic neutrino flux
1M€
Cerrado
FPA2015-65150-C3-2-P
PARTICIPACION DE LA UPV EN ANTARES Y KM3NET-ARCA/ORCA
121K€
Cerrado
PGC2018-096663-B-C43
FISICA FUNDAMENTAL, DETECCION ACUSTICA Y ASTRONOMIA MULTI-ME...
254K€
Cerrado
PID2021-124050NB-C31
FISICA CON SUPER-KAMIOKANDE Y CONSTRUCCION DE HYPER-KAMIOKAN...
85K€
Cerrado
FPA2015-65150-C3-3-P
PARTICIPACION DE LA UGR EN ANTARES, KM3NET-ARCA/ORCA Y PDG
67K€
Cerrado
Información proyecto NEUTRINOSHOT
Duración del proyecto: 61 meses
Fecha Inicio: 2022-07-08
Fecha Fin: 2027-08-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
For over a century, ultra-high energy cosmic rays (CR) have been observed by scientists, but their energy and place of production remain a mystery. At very high energies, neutrinos generated by CR carry messages from, e.g., the verge of supermassive black holes, but here our understanding is limited. Tracking neutrinos offers a way to trace the origin of the highest energetic particles in the universe. The stumbling block is that neutrinos, the ghost particles, are notoriously tough to detect. A target of at least a Gigaton of natural transparent material, like water or ice, must be instrumented to collect neutrinos from the cosmos. Currently, only IceCube Neutrino Observatory at the South Pole has the exposure to detect very high-energy neutrinos beyond Earth’s atmosphere. More and larger telescopes are needed to advance on this promising, rich path of fundamental discoveries in astro and particle physics. The objectives of NEUTRINOSHOT are to significantly advance the development of telescopes that detect far beyond the reach of IceCube, and make the exploration of cosmic accelerators more affordable. This can only be achieved with multi-cubic-kilometre (km) neutrino telescopes, currently limited by the scalability of technology to volumes beyond the cubic km. To this end, the lead researcher has identified the optimum testing location and established a scientific relationship with Ocean Networks Canada (ONC) to pioneer this global network as a testbed infrastructure for first case testing, deployment, and use of a new multi-line array neutrino telescope capable of functioning in extreme deep sea environmental conditions with improved sensitivities by orders of magnitude. This project will detect the first neutrinos in the Pacific Ocean and give neutrino astronomy a new shot to bring science a major step closer to revealing the hidden parts of our universe.