The interplay between energetic particles and magnetohydrodynamics (MHD) fluctuations plays a paramount role in a modern society with growing energy demands and active interaction with the space weather. The prediction of space we...
ver más
31/08/2029
US
3M€
Presupuesto del proyecto: 3M€
Líder del proyecto
UNIVERSIDAD DE SEVILLA
No se ha especificado una descripción o un objeto social para esta compañía.
Total investigadores3688
Fecha límite participación
Sin fecha límite de participación.
Financiación
concedida
El organismo HORIZON EUROPE notifico la concesión del proyecto
el día 2024-08-06
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto SMARTWAVES
Duración del proyecto: 60 meses
Fecha Inicio: 2024-08-06
Fecha Fin: 2029-08-31
Líder del proyecto
UNIVERSIDAD DE SEVILLA
No se ha especificado una descripción o un objeto social para esta compañía.
Total investigadores3688
Presupuesto del proyecto
3M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The interplay between energetic particles and magnetohydrodynamics (MHD) fluctuations plays a paramount role in a modern society with growing energy demands and active interaction with the space weather. The prediction of space weather and viability of fusion as a virtually unlimited source of energy rely on a good understanding of fundamental wave-particle interactions. Although the sources of energetic particles are quite different for space, astrophysical and laboratory plasmas, the main challenges remain the same: 3D multi-scale physics and non-linear wave-particle interactions.
In the framework of SMARTWAVES, a potentially revolutionary plasma regime for future burning fusion plasma devices with tailored MHD activity will be developed. Novel diagnostic techniques to monitor the temporal evolution of the energetic ion distribution in phase-space will allow the identification of the fundamental wave-particle resonances responsible for the experimental observations. Combined with the next generation of electron fluctuations diagnostics, I will provide a complete physics basis of currently inaccessible wave phenomena. This will pave the way towards a high-confinement plasma regime that closes the burning plasma performance and exhaust gap, simultaneously maximizing the fusion gain and minimizing the plasma-wall interaction. Advanced 3D non-linear codes validated in tokamak plasmas will be applied to relevant solar events paving the way to a space weather forecast station. I will apply the basic knowledge gained in tokamaks with advanced in-situ diagnostics to test and further develop hybrid models and numerical tools shared by the fusion, space and astrophysical communities. This project will represent a gateway between the space, astrophysical and fusion communities opening new horizons for a common ground science.