Wave-function Networks: Probe and understand quantum many-body systems via netwo...
Wave-function Networks: Probe and understand quantum many-body systems via network and complexity theory
WaveNets aims to establish a novel theoretical paradigm for understanding quantum systems, centred on a network interpretation of many-body wave-functions.Ongoing experimental progress motivates the need for a new theoretical appr...
WaveNets aims to establish a novel theoretical paradigm for understanding quantum systems, centred on a network interpretation of many-body wave-functions.Ongoing experimental progress motivates the need for a new theoretical approach: in the field of quantum simulation and quantum computing, probing capabilities have reached unprecedented levels, with the ability to collect thousands of wave function snapshots with impressive accuracy.However, most of our theoretical understanding of such settings still relies on and relates to few-body observables. This has created a clear gap between experimental capabilities and theoretical tools and concepts available to understand physical phenomena. The overall goal of WaveNets is to bridge this gap by introducing a mathematical framework to describe wave-function snapshots based on network theory — wave function networks — that will enable a completely new set of tools to address open problems in the field of quantum matter.WaveNets' main objectives are:- to demonstrate that wave function snapshots of correlated systems are described by scale-free networks, and classify the robustness of quantum simulators according to such;- to formulate methods for quantifying the Kolmogorov complexity of many-body systems, and propose an information-theory-based characterization of topological matter and confinement in gauge theories;- to propose scalable methods for measuring entanglement in quantum simulators and computers, as well as for their validation.Achieving these objectives will (a) provide unique insights into the information structure of quantum matter, (b) enable methods of probing and controlling matter of direct experimental relevance thanks to the intrinsic scalability of network-type descriptions, and (c) establish a new, interdisciplinary bridge between quantum science, and network and data mining theory, that makes possible knowledge transfer between two mature, yet poorly connected disciplines.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.